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Abstract

We examine methods for clustering in high
dimensions. In the first part of the paper,
we perform an experimental comparison be-
tween three batch clustering algorithms: the
Expectation–Maximization (EM) algorithm,
a “winner take all” version of the EM algo-
rithm reminiscent of the K-means algorithm,
and model-based hierarchical agglomerative
clustering. We learn naive-Bayes models with
a hidden root node, using high-dimensional
discrete-variable data sets (both real and syn-
thetic). We find that the EM algorithm
significantly outperforms the other methods,
and proceed to investigate the effect of var-
ious initialization schemes on the final solu-
tion produced by the EM algorithm. The ini-
tializations that we consider are (1) parame-
ters sampled from an uninformative prior, (2)
random perturbations of the marginal distri-
bution of the data, and (3) the output of hier-
archical agglomerative clustering. Although
the methods are substantially different, they
lead to learned models that are strikingly
similar in quality.

1 Introduction

The present work concentrates on the unsupervised
learning of a simple but widely used mixture model of
factored distributions: a naive-Bayes model with a hid-
den root node (e.g., Clogg, 1995; Cheeseman & Stutz,
1995). This learning task is often referred to as clus-

tering. The conceptual simplicity of the naive-Bayes
model and its ease of implementation make it an ideal
prototype and benchmark model. Moreover, in higher
dimensions, where both the search for model structure
and escaping local optima in the parameter space can
substantially slow computation, the relatively small

number of parameters of the naive-Bayes model make
it more appealing than other complex models.

Nonetheless, even for this relatively simple model, high
dimensional domains (tens to hundreds of variables)
can present a challenge for both structure and param-
eter search algorithms. The aim of our work is to study
the behavior of a number of commonly used algorithms
for learning the parameters of mixture models on data
of high dimensionality. Within this framework, special
attention will be given to the initialization issue: How
important is the choice of the initial parameters of an
iterative algorithm and how do we find a good set of
initial parameters?

In Section 2, we introduce the clustering problem and
the learning algorithms that we shall compare. All
algorithms are batch algorithms as opposed to on-
line ones. They are Expectation-Maximization (EM),
Classification EM (CEM)—a “winner take all” ver-
sion of the EM algorithm reminiscent of the K-means
algorithm—and hierarchical agglomerative clustering
(HAC). In Sections 3 and 4, we describe our experi-
mental procedure and datasets, respectively. In Sec-
tion 5, we compare the three learning algorithms. The
experiments suggest that the EM algorithm is the
best method under a variety of performance measures.
Consequently, in Section 6, we study the initialization
problem for EM by comparing three different initial-
ization schemes. Finally, in Section 7, we draw con-
clusions and point to various directions for further re-
search. Details about HAC and its implementation are
presented in Meilă & Heckerman (1998).

2 Model, algorithms, and

performance criteria

2.1 The clustering problem

Here we describe the clustering model and formu-
late the learning problem that the algorithms un-
der study will attempt to solve. Assume the do-



main of interest is described by the vector variable
X = (X1, X2, . . . Xn). (We follow the usual conven-
tion of denoting random variables with upper case let-
ters and their states with lower case letters.) The clus-
tering model for the variables X is given by

P (X) =

K∑

k=1

λk

n∏

i=1

P (Xi|class = k) (1)

K∑

k=1

λk = 1, λk ≥ 0.

In general, each variable X1, X2, . . . Xn may be con-
tinuous or discrete. Throughout this paper, how-
ever, we assume that all the variables are discrete and
that P (Xi|class = k) are multinomial distributions.
This model is sometimes referred to as a multinomial-

mixture model. The model can also be viewed as a
naive-Bayes model in which a hidden variable “class”
renders the variables X1, . . . , Xn mutually indepen-
dent. Under this interpretation, the values λk, k =
1, . . . K correspond to the probability distribution of
the variable “class”.

Having a database of N observations or cases D =
{x1, x2, . . . xN} the clustering problem consists of
finding the model—the model structure (i.e., num-
ber of classes) and parameters for that structure—that
best fits the data D according to some criterion.

In what follows, we sometimes refer to the distribution
P (x|class = k) as the class or cluster k. Also, we
sometimes refer to a case for which the variable class
is set to k as being assigned to class k, and sometimes
refer to the set of all cases having this property as the
class or cluster k.

2.2 Clustering algorithms

The clustering algorithms that we consider choose the
best model in two stages. First, a Bayesian criterion
is used to choose the best model structure. Then, the
parameters for the best model structure are chosen to
be either those parameters whose posterior probability
given data is a local maximum (MAP parameters) or
those parameters whose corresponding likelihood is a
local maximum (ML parameters).

The Bayesian criterion for selecting model structure
that we use is the log posterior probability of model
structure given the training data log P (K|Dtrain).
(We use K to denote a model structure with K
classes.) Because we assume uniform model-structure
priors, this criterion reduces to the log marginal like-

lihood of the model structure log P (Dtrain|K). In
our experiments, we approximate this criterion us-
ing the method of Cheeseman and Stutz (1995) (see
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Figure 1: Log marginal likelihood as a function of clus-
ter size K for a typical run.

also Chickering & Heckerman, 1997). Figure 1 shows
how the log marginal likelihood varies as a function
of K under one particular experimental condition.
Curves for other experimental conditions are qualita-
tively similar. As K increases, the marginal likelihood
first increases and then decreases. The decrease occurs
because the Bayesian criterion has a built-in penalty
for complexity.

We examine several algorithms for learning the pa-
rameters of a given model structure: the Expectation-
Maximization (EM) algorithm (Dempster, Laird, &
Rubin, 1977), the Classification EM (CEM) algorithm
(Celeux & Govaert, 1992), and model-based hierar-
chical agglomerative clustering (HAC) (e.g., Banfield
& Raftery, 1993). Sometimes, we shall refer to these
parameter-learning algorithms simply as clustering al-
gorithms.

The EM algorithm is iterative, consisting of two alter-
nating steps: the Expectation (E) step and the Maxi-
mization (M) step. In the E step, for every xj , we use
the current parameter values in the model to evalu-
ate the posterior distribution of the hidden class node
given xj . We then assign the case fractionally to each
cluster according to this distribution. In the M step,
we reestimate the parameters to be the MAP (or ML)
values given this fractional assignment. The EM algo-
rithm finds a local maximum for the parameters (MAP
or ML). The maximum is local in the sense that any
perturbation of the parameters would decrease the pa-
rameter posterior probability or data likelihood. The
algorithm finds the maximum to any desired (non-
perfect) precision in a finite number of steps.

The CEM algorithm is similar to the EM algorithm in
that CEM also has E and M steps. The algorithm dif-
fers from EM in that, within the E step, a case xj is as-
signed fully to the class k that has the highest posterior



probability given xj and the current parameter values.
That is, no fractional assignments are permitted. The
M step in the CEM algorithm is identical to that in
the EM algorithm. For continuous variable domains in
which the mixture components are spherical Gaussian
distributions, the CEM algorithm for ML parameters
is equivalent to the K-means algorithm. The CEM al-
gorithm converges to local MAP (or ML) parameters
under the constraint that each case is assigned to only
one cluster. Unlike EM, the CEM algorithm converges
completely in a finite number of steps.

The EM and CEM algorithms require initial parameter
values. We consider various initialization methods in
the following section.

Hierarchical agglomerative clustering is substantially
different from EM or CEM. When using hierarchi-
cal agglomerative clustering, we construct K clusters
from a larger number of smaller clusters by recursively
merging the two clusters that are closest together. We
start with N clusters, each containing one case xj .
Each merge reduces the number of clusters by one.
The algorithm stops when the desired number of clus-
ters K is reached. One essential ingredient of the algo-
rithm is, of course, the intercluster “distance”1 d(k, l).
The particular form of HAC that we examine is model
based in the sense that the distance used for agglom-
eration is derived from a probabilistic model. Banfield
& Raftery (1993) introduced a distance d(k, l) derived
from a Gaussian mixture model. This distance is equal
to the decrease in likelihood resulting by the merge
of clusters k and l. Fraley (1997) derives this dis-
tance measure for special cases of Gaussian models,
and describes algorithms for accomplishing the clus-
tering in time and memory proportional to N2. Here
we derive this distance metric for mixtures of inde-
pendent multinomially distributed variables (i.e., dis-
crete naive-Bayes models). (The distance metric can
be extended in a straightforward manner to consider
differences in parameter posterior probability.) The al-
gorithm we use requires memory only linear in N , and
its running time is typically quadratic in N . With
minor modifications, the same algorithm can handle
certain classes of Gaussian mixtures.

Consider the likelihood of the data D given an assign-
ment of the cases to clusters:

L(D|C1, . . . , CK) =

K∑

k=1

∑

xj∈Ck

log P (xj |k) (2)

=
K∑

k=1

Lk(θk)

1This measure is positive and symmetric, but may not
always satisfy the triangle inequality.

where Lk(θk) denotes the contribution of cluster Ck

to the log-likelihood, and θk represents the set of ML
parameters of the distribution P (x|k). Note that the
term Lk(θk) depends only on the cases in cluster Ck.
By merging clusters k and l and assigning all their
cases to the newly formed cluster C<k,l>, the log-
likelihood L decreases by

Lk(θk) + Ll(θl) − L<k,l>(θ<k,l>) ≡ d(k, l) ≥ 0 (3)

Because d(k, l) depends only on the cases belonging
to the clusters involved in the merge, all the distances
d(k′, l′) between other cluster pairs remain unchanged.
Moreover, the ML parameter set θk and the value of
d(k, l) depend only on a set of sufficient statistics that
are stored for each cluster; and these items can be re-
cursively updated when two clusters are merged with-
out direct access to the cases. Using this fact, we have
developed a memory efficient distance updating algo-
rithm, described in Meilă and Heckerman (1998).

Our HAC implementation requires O(N) memory and
time between O(N2) and O(N3). Experiments (sec-
tion 6.2) show that typically the running time is close
to the lower bound O(N2). The algorithm can be
generalized to any distance measure that is local (i.e.
d(k, l) depends only on Ck and Cl) and, with minor
modifications, also to certain classes of Gaussian mix-
tures. Finally, note that, whereas the EM and CEM
require an initial point in the parameter space, HAC
does not.

2.3 Initialization methods

As we have discussed, the EM and CEM algorithms
require an initial set of parameter values. In this sec-
tion, we describe the initialization methods that we
compare.

First, however, we caution that “the best initialization
method” is an ill-defined notion, becuase there is no
formal delimitation between initial search and search.
For example, when considering the EM algorithm, the
ideal initial point would lie somewhere in the domain
of attraction of the global optimum. Finding such a
point, however, means finding the global optimum to
a certain accuracy. This task represents a search per
se, and perhaps a more challenging one than that per-
formed by the main EM algorithm. Furthermore, the
notion of “best” will generally involve a tradeoff be-
tween accuracy and computation cost. For these rea-
sons, we should not expect to find an initialization
method that outperforms all the others on all tasks.
Rather, the performance (and relative performance)
of an initialization procedure will depend on the data,
the accuracy/cost tradeoff, and the “main” search al-
gorithm. As is the case for search algorithms, one can



only hope to find initialization methods that perform
well on limited classes of tasks that arise in practice.
This is the aim of our study on initialization methods.

The first method, the Random approach, consists of
initializing the parameters of the model independently
of the data. Using this approach, we sample the pa-
rameter values from an uniformative distribution. In
our experiments, we sample the parameters of P (Xi|k)
from a uniform Dirichlet distribution with an equiva-
lent sample size equal to the number of states of Xi.

The noisy-marginal method of Thiesson, Meek,
Chickering, & Heckerman (1997) (herein denoted
“Marginal”) is a data dependent initialization method.
Using this approach, we first determine the ML (or
MAP) parameter configuration under the assumption
that there is only one class. This step can be done in
closed form. Next, for each class k and each variable
Xi, we create a conjugate (Dirichlet) distribution for
the parameters corresponding to P (Xi|k) whose pa-
rameter configuration of maximum value agrees with
the ML or MAP configuration just computed and
whose sample size is specified by the user. We then
sample the parameters corresponding to P (Xi|k) from
this distribution. In our experiments, we use an equiv-
alent sample size of two and match to the MAP con-
figuration (given a uniform parameter prior).

The distribution of the hidden class variable is initial-
ized to be the uniform distribution when using either
of the above methods.

The last initialization method is hierarchical agglomer-
ative clustering itself. In this data-dependent method,
we perform HAC on a random sample of the data.
From the resulting clusters, we extract a set of suffi-
cient statistics (counts). We then set the model param-
eters to be the MAP given the counts obtained from
agglomeration and a uniform (Dirichlet) prior distri-
bution.

We apply agglomeration to a random sample of the
data, because using all the data is often intractable.
Furthermore, inaccuracies due to subsampling may be
corrected by the EM and CEM clustering algorithms.

2.4 Performance criteria

In this section, we describe the criteria that we use to
compare learned models. Some of our criteria mea-
sure the quality of the entire model (parameters and
structure), whereas other criteria measure the quality
of only the model structure—that is, the quality of the
assumption that the data is generated from a mixture
model with K components.

As we have discussed, the log-marginal-likelihood cri-
terion is used to select the best model structure (best

number of clusters). We use this score in our compar-
isons as well.

Another criterion for model structure is the difference
between the number of clusters in the model and the
true number of clusters Ktrue. Such a measure reflects
(in part) how well the learned models help the user to
understand the domain under study. This criterion
can only be determined for synthetic datasets where
the true number of clusters is available. Furthermore,
even when the true model available, this criterion may
be inaccurate for small datasets, when there is insuf-
ficient data to support the true number of clusters.
We note that, under certain experimental conditions,
some of the learned clusters can be quite small. In the
results that we present, we discard (i.e., do not include
in the count of number of clusters) any cluster that has
less than one case as its member. This situation can
arise in models learned by the EM algorithm, due to
the fractional assignment of cases to clusters.

A criterion for the entire model is the cross entropy
between the true joint distribution for X and the joint
distribution given by the model:

∑

x

P true(x) log P (x|model) (4)

where model denotes both the parameters and struc-
ture of the model. In our experiments, we estimate
this criterion using a holdout dataset Dtest:

Ltest =
1

|Dtest|

∑

x∈Dtest

log P (x|model) (5)

Another criterion for the entire model is classification

accuracy, defined to be the proportion of cases for
which the most likely class k (according to the model)
is the true one. We determine the classification accu-
racy as follows. Because clusters in a learned model are
interchangeable, we first must map the learned cluster
labels to the actual ones. To do so, we construct the
confusion matrix C:

Cii′ = #cases j for which kj = i, kj∗ = i′ (6)

where j is the case number, kj is the class that the
learned model assigns to case j, and kj∗ is the true
class of case j. Then, we map each cluster k in the
learned model to the cluster k′ of the true model to
which most of its cases belong (this corresponds to a
permutation of the rows of C). Once we have mapped
the cluster labels, we simply count the cases in k that
have the correct label, and divide by the total num-
ber of cases. This criterion can be computed only for
synthetic datasets where the true class information is
available.



Practical criteria for algorithm comparison include
running time and memory requirements. Because all
the algorithms that we consider require memory pro-
portional to the number of cases N , the number of
observable variables n, and the number of clusters K,
there is no further need to make experimental com-
parison with respect to storage usage. Nonetheless,
running times per iteration differ for the considered
algorithms. Moreover, the number of iterations to con-
vergence for EM and CEM is a factor that cannot be
predicted. Hence, experimental comparisons with re-
spect to running time should be informative.

A summary of the performance criteria is given in Ta-
ble 1. In the results that we report, we normalize the
marginal likelihood and holdout scores by dividing the
number of cases in the appropriate dataset. Also, we
use base-two logarithms. Hence, both likelihoods are
measured in bits per case.

3 Experimental procedure

An experimental condition is defined to be a choice of
clustering algorithm, initialization algorithm, and pa-
rameters for each (e.g., the convergence criterion for
EM and the number of subsamples for HAC). We eval-
uate each experimental condition as follows. First, we
learn a sequence of models modelKmin

, . . .modelKmax

using the training set Dtrain. For each K, the
model structure of modelK is evaluated using the
log-marginal-likelihood criterion (in particular, the
Cheeseman-Stutz appoximation). Then, the number
of clusters K∗ is chosen to be

K∗ = argmax
K

log P (Dtrain|K) (7)

Once K∗ is selected, the corresponding trained model
is evaluated using all criteria.

Because the quality of learned models is vulnerable to
noise—randomness in the initial set of parameters for
EM and CEM, and the subsample of points used for
HAC—we repeat each experimental condition several
times using different random seeds. We call an evalu-
ation for a given experimental condition and random
seed a “run”.

We compute MAP parameters (as opposed to ML pa-
rameters) for the EM and CEM algorithms, using an
uniform prior for each parameter. For HAC, we use
ML-based distance. In all trials (except those to be
noted), we run EM and CEM until either the relative
difference between successive values for the log pos-
terior parameter probability is less than 10−6 or 150
iterations are reached.

All experiments are run on a P6 200 MHz computer.

4 Datasets

4.1 The synthetic dataset

Synthetic datasets have the advantage that all of our
criteria can be used to compare the clustering and in-
tialization algorithms. Of course, one disadvantage of
using such datasets is that the comparisons may not
be realistic. To help overcome this concern, we con-
structed a synthetic model so as to mimic (as much as
we could determine) a real-world dataset.

The real-world data set that served as the template for
our synthetic model was obtained from the MSNBC
news service. The dataset is a record of the stories
read and not read by users of the www.msnbc.com
web site during a one-week period in October of 1998.
In this dataset, each observable variable corresponds
to a story and has two states: “hit” (read) and “not
hit” (not read). We shall use Xi to refer both to a
particular story and its corresponding variable.

A preliminary clustering analysis of this dataset, using
both EM and CEM with random initialization, showed
the following. (1) There were approximately 10 clus-
ters. (2) The size of clusters followed Zipf’s law (Zipf,
1949). That is, the probabilities P (class = k), k =
1, . . . , K, when sorted in descending order, showed a
power-law decay. (3) The marginal probabilities of
story hits also followed Zipf’s law. That is, the prob-
abilities P (Xi =hit) for all stories, when sorted in de-
scending order, showed a power-law decay. (4) The
clusters overlapped. That is, many users had substan-
tial class membership in more than one cluster. (5)
Users in smaller clusters tended to hit more stories.
(6) The clusters obtained did not vary significantly
when all but the 150 most commonly hit stories were
discarded from the analysis. This finding is likely due
to item 3.

We used all of these observations in the construction of
the synthetic model. In addition, we wanted the syn-
thetic model to be more complex than the models we
would attempt to learn (the naive-Bayes model). Con-
sequently, we constructed the model as follows. First,
we built a naive-Bayes model where the hidden vari-
able class had K = 10 states and where the observable
variables corresponded to the 300 most commonly hit
stories. We assigned the distribution P (class) to be
(0.25, 0.18, 0.18, 0.09, 0.09, 0.09, 0.045, 0.035, 0.025,
0.015)–roughly approximating a power decay. Then,
for each story variable Xi and for k = 1, . . . , 10, we
assigned P (Xi =hit|class = k) to be the marginal
distribution for story Xi, and perturbed these con-
ditional distributions with noise to separate the clus-
ters. In particular, for every Xi and for k = 1, . . . , 10,
we perturbed the log odds log P (Xi = hit|class =



Table 1: Performance criteria.

Criterion Expression Comment
Marginal L 1

|Dtrain| log2 P (Dtrain|K
∗) Bayesian criterion

K∗ K∗ number of clusters in “best” model
Class acc 1

|Dtest|
#cases correctly classified classification accuracy

Holdout L 1

|Dtest|
log2 P (Dtest|modelK∗) prediction accuracy on a test set

Runtime training time for modelK∗

k)/(1 − P (Xi = hit|class = k)) with normal noise
N(α, 1), where α = −0.5 for class = 1, 2, 3 (the large
clusters), α = 0 for class = 4, 5, 6 (the medium-size
clusters), and α = 1 for class = 7, 8, 9, 10 (the small
clusters). These values for α produced a model with
overlapping clusters such that smaller clusters con-
tained more hits. Next, we added arcs between the
observable variables such that each observed variable
had an average of two parents and a maximum of three
parents. To parameterize the conditional dependen-
cies among the observed variables, we perturbed the
log odds log P (Xi = hit|Pai, class = k)/(1 − P (Xi =
hit|Pai, class = k)) for every parent configuration with
normal noise N(0, 0.25).

Finally, we sampled 32,000 cases from the model
and then discarded the 150 least commonly hit sto-
ries. By discarding these variables (i.e., making them
unobserved), we introduced additional dependencies
among the remaining observed variables. We refer
to this data set as SY32K . We also generated a
test set SY8K containing 8,000 cases for the same
150 variables retained in SY32K . The generative
model and datasets are available via anonymous ftp
at ftp.research.microsoft.com/pub/dtg/msnbc-syn.

4.2 The digits datasets

Another source of data for our comparison consists of
images of handwritten digits made available by the US
Postal Service Office for Advanced Technology (Frey,
Hinton, & Dayan, 1995). The images were normalized
and quantized to 8x8 dimensional binary patterns. For
each digit we had a training set of 700 cases and a test
set of 400 cases. We present detailed results on one
digit, namely digit6. Results for other digits that we
examined (“0” and “2”) are similar.

5 Comparison of clustering algorithms

This section presents a comparison between the EM,
CEM, and HAC algorithms on the synthetic and
digit6 datasets. Because HAC was too slow to run
on a full 32K training set (for synthetic data), we ex-
perimented with HAC on a subset SY ′

8K of SY32K with

only 8,000 cases. However, this training set was too
small to learn a model with the complexity of the true
one. Hence, to provide a fair comparison, we first com-
pared EM and CEM using the full SY32K dataset, and
then compared the better of these two algorithms with
HAC using SY ′

8K .

5.1 Synthetic data: EM versus CEM

As mentioned above, for the purpose of this compari-
son, Dtrain = SY32K and Dtest = SY8K . Because both
EM and CEM require initial parameters, we compared
these algorithms using all three initialization methods.

The results on the synthetic data are presented in
Table 2. In this and subsequent tables, boldface is
used to indicate the best algorithm for each criterion.
The table shows the clear dominance of EM over CEM
for all initialization methods and for all criteria. The
most striking difference is in the choice of K∗, the
number of clusters. CEM constantly underestimated
K∗, whereas EM, for the two out of three initialization
methods used, successfully found the true number of
clusters.

Several issues concerning classification accuracy are
worth noting. First, all classification accuracies were
low, because the clusters overlapped significantly. In
particular, the classification accuracy for the true
model was only 73%. Also, classification accuracy cor-
related closely with the choice of K∗. When K∗ = 10,
the classification accuracy of the learned model was
close to that of the true model. Whereas, when K∗ = 7
or lower, the classification accuracy of the learned
model was approximately two-thirds of that of the true
model. ¿From an examination of the confusion matri-
ces for CEM, we found that the underestimation of
K∗ had two sources: confusion among the 3 largest
clusters, and the failure to discover the existence of
the smallest clusters. The second source had a smaller
impact on classification accuracy.

The only possible advantage of CEM over EM is run-
ning time. CEM was about four times faster than EM,
because (1) EM requires the accumulation of fractional
statistics whereas CEM does not, and (2) CEM takes
fewer iterations to converge. We attribute the second



Table 3: Performance of the EM and HAC algorithms
on the synthetic dataset (average and standard devia-
tion over five runs). Runtimes are reported in minutes
per class.

EM HAC

Marginal L -20.93 ± 0.108 -21.08± 0.144
K∗ 4 ± 0 2± 1
Holdout L -20.63 ± 0.018 -20.88± 0.018
Class acc 0.41± 0.01 0.33 ± 0.02
Runtime 0.6; O(N) 35; O(N2)

phenomenon to the fact that CEM’s explorations were
more constrained, so that the impossibility of an up-
ward move occurred earlier. We shall further examine
this issue in Section 5.4.

5.2 Synthetic data: EM versus HAC

As discussed, we next compared EM—the better of
EM and CEM—with the HAC algorithm using a
smaller training set Dtrain = SY ′

8K . In this compari-
son, we used the same test set Dtest = SY8K . EM was
initialized with the Marginal method.

The results in Table 3 show the clear superiority of EM
over HAC. For such a small dataset, both algorithms
fare poorly in terms of the number of clusters found,
but EM finds twice as many. Indeed, an analysis of
the confusion matrices showed that HAC was unable
to distinguish the three largest clusters. In addition,
an important difference is seen in the running time.
HAC runs approximately 60 times slower than EM;
and this ratio grows with N because the running times
of EM and HAC are O(N) and approximately O(N2),
respectively.

5.3 Digits data: Comparison of EM, CEM,

and HAC

For the digit6 dataset, all three algorithms were
trained (tested) on the same training (test) set.
The results, showing marginal-likelihood and holdout
scores for digit6 are given in Table 4. Only the re-
sults for Marginal intialization of the EM and CEM
algorithms are shown. The results for the other intial-
ization methods are similar.

The EM algorithm performed best by both criteria.
We note that, for this dataset, all the methods choose
about the same number of clusters.

5.4 EM versus CEM: Runtime considerations

On our datasets, the EM algorithm dominates HAC,
because EM is both more accurate and more efficient.

Table 4: Performance of the EM, CEM, and HAC al-
gorithms on the digit6 dataset (averaged over 20 runs
for EM and 10 runs for CEM). EM and CEM were
both initialized by the Marginal method .

EM CEM HAC

Marginal L -35.09 ± 0.04 -35.30 ± 0.07 -35.76
Holdout L -32.36 ± 0.22 -32.97 ± 0.30 -32.42

Table 5: Performance of the EM and CEM algorithms
on the synthetic dataset when EM is allowed to run
no longer than CEM (averaged over five runs). Run-
times are reported in seconds per class.

EM CEM

Marginal L -20.57 ± 0.026 -20.66 ± 0.031
K∗ 9 ± 2 7 ± 3
Holdout L -20.42 ± 0.032 -20.52 ± 0.036
Class acc 0.57 ± 0.03 0.46 ± 0.06
Runtime 25 27

So far, however, the case for EM versus CEM is not
so clear. As we have seen, the EM algorithm is more
accurate, but less efficient. This brings us to the ques-
tion: If EM is forced to run for a time shorter or equal
to the time taken by CEM is it still more accurate than
CEM? In this section, we examine this question.

We adjusted the running time of EM by changing
the convergence threshold. We conducted timing ex-
periments and found that convergence thresholds of
4 × 10−4 and 10−3 (for the synthetic and digits data
sets, respectively) yielded EM speeds that were slightly
faster than CEM. We repeated the comparison of EM
and CEM, using these new thresholds.

The results for the synthetic and digits datasets are
shown in Tables 5 and 6, respectively. For both
datasets and all criteria, EM is still more accurate
than CEM, although the differences in accuracy are
less than what we obtained for the original conver-

Table 6: Performance of the EM and CEM algorithms
on the digit6 dataset when the convergence criterion
for EM is set so that EM runs slightly faster than CEM
(averaged over ten runs). Runtimes are reported in
seconds per class.

EM CEM

Marginal L -35.26 ± 0.09 -35.30 ± 0.07

Holdout L -32.47 ± 0.23 -32.97 ± 0.03
Runtime 0.082 0.089



Table 2: Performance of the EM and CEM algorithms with three different initialization methods on the synthetic

dataset (average and standard deviation over five runs). The classification accuracy of the true model is 0.73.
Runtimes are reported in minutes per class and exclude initialization. Boldface is used to indicate the best
algorithm for each criterion.

Initialization Random Marginal HAC

EM CEM EM CEM EM CEM

Marginal L -20.53 -20.57 -20.51 -20.66 -20.52 -20.72
(bits/case) ±0.009 ±0.032 ±0.0045 ±0.031 ±0.013 ±0.031
K∗

7±1 6±3 10±1 7±3 10±1 7±3
Holdout L -20.41 -20.50 -20.36 -20.52 -20.34 -20.72
(bits/case) ±0.036 ±0.036 ±0.018 ±0.036 ±0.018 ±0.072
Class acc 0.50±0.05 0.44±0.01 0.66±0.04 0.46±0.06 0.68±0.01 0.43±0.04
Runtime 2 0.5 2 0.5 2 0.5

gence threshold. All experimental conditions yield a
significant difference at the 95% level, except the K∗

criterion in the synthetic dataset and the marginal-
likelihood criterion in the digits dataset which are sig-
nificant only at the 85% confidence level.

6 Comparison of initialization

methods

We now examine the influence of initialization proce-
dures on the performance of the EM algorithm—the
algorithm that performed best in our previous com-
parison. Our main concern will be the quality of the
models obtained. Running time, as long as it is in
reasonable limits, will be of secondary interest.

6.1 Synthetic data

The results on the synthetic dataset were shown pre-
viously in Table 2. We used Dtrain = SY32K and
Dtest = SY8K . We used a subsample of the train-
ing set of size N ′ = 2000 for the HAC intialization
method.

The data independent (Random) method fared worse
than did the data dependent methods across all cri-
teria. All differences between the data dependent
methods and Random—except one: HAC versus Ran-
dom on Marginal Likelihood—are significant. On the
other hand, there are no significant differences between
Marginal and HAC.

The initialization runtimes for Random, Marginal,
and HAC were 0, 4, and 1800 seconds, respectively.
Random is fastest (taking constant time), Marginal
is slightly slower (requiring one sweep through the
dataset), and HAC is hundreds of times slower yet,
even though only a portion of the training data was
used.
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Figure 2: Classification accuracy of the final EM solu-
tion versus the HAC subsample size N ′ for the syn-

thetic data. Statistics are computed over five runs.

6.2 Sample size for hierarchical

agglomerative clustering

In the previous section, we saw that HAC used on a
sample of the original training set of size N ′, can pro-
vide a good set of initial parameters for the EM algo-
rithm. In this section, we ask the question: How small
can we make N ′ and still obtain good performance?

To answer this question, we varied N ′ from 125 to
4000. Figure 2 shows the classification accuracy of the
resulting models. We obtained similar curves for the
other performance.

The graph shows that, as N ′ decreases from 4000 to
500, the performance decays slowly, accompanied by
an increasing variability. Not surprising, an analysis
of the confusion matrices showed that performance de-
creases because, as N ′ decreases, the smaller clusters
are missed and the confusion between the larger ones
increase. These observations suggest that the lower
limit on N ′ should be influenced by prior knowledge
about the size of the smallest cluster. For N ′ below
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Figure 3: Running time of the EM algorithm initial-
ized with HAC versus the HAC subsample size N ′.
The error bars are small and have been omitted. The
scale for N ′ is quadratic.

500, the classification performance degrades abruptly.
Detailed analysis showed that, in this range, the clus-
tering algorithm was failing to separate the largest
clusters.

The running time of HAC versus the number of sam-
ples is shown in Figure 3. In this range for N ′, the
time taken by HAC initialization strongly dominates
the running time for the EM algorithm. Although the
theoretical worst case is O(N3), the graph shows that
the running time approximately follows a quadratic
law.

6.3 The digits6 dataset

We compare the three initialization methods on the
digit6 data as well. We examine HAC with N ′ =
N = 700 and with lower values N ′ = 100, 300. Table
7 summarizes the results. There are no clear winners.
In contrast to the results for the synthetic data set,
Random does not perform worse. Nonetheless, we find
two related qualitative differences between the models
produced by Random initialization and the other two
methods. The clusters learned using Random initial-
ization are greater in number and show more variabil-
ity in size. Moreover, Random initialization tends to
yield more small clusters. On average, for the models
whose performance is recorded in Table 7, 1.5 clusters
are supported by less than one case.

Finally, note that HAC followed by EM produces bet-
ter models than does HAC alone (see Tables 4 and
7).

7 Discussion

We have compared several popular batch algorithms
for clustering in high dimensions on discrete-variable
models with uninformative priors. To do so, we
have formulated a likelihood based disatance measure
for agglomerative clustering over discrete variable do-
mains and have introduced a new, memory efficient
HAC algorithm. Although comparisons with addi-
tional data sets (including ones with larger dimension
and continuous variables) are needed, our results sug-
gest that the EM algorithm produces better models
than does CEM and HAC, regardless of the criterion
for model evaluation. We found that, for original con-
vergence settings, EM was slower than CEM and HAC
was slower yet. Nonetheless, we found that the con-
vergence setting of EM could be adjusted so that EM
ran faster than CEM and still produced better models,
albeit of lower quality than for the original settings.

These results suggest that the quality of a clustering
algorithm correlates well with assignment “softness”.
Namely, HAC assigns each case to only one cluster
and this assignment cannot be changed in subsequent
iterations. CEM also assigns a case to only one cluster,
but each iteration recomputes the assignment. EM
not only reevaluates its assignments at each iteration
(like CEM), but also allows for partial credit to several
clusters.

Finding that the EM algorithm performed best, we
studied various ways of choosing initial parameters.
Although the three methods used are dissimilar, their
performance is strikingly similar on all the datasets
we examined. On the synthetic dataset, the Random
method performed worse than did the data-dependent
initialization method, but this difference was not seen
for the real-world data. Because we found no differ-
ence between HAC (as an initialization method) and
Marginal, except that Marginal is more efficient, our
results suggest that that Marginal initialization is the
method of choice. Finding situations when Random
and Marginal produce different results is a possible
topic for further research.

Although our results are suggestive, comparisons us-
ing additional datasets—for example, ones having 200
or more dimensions and ones that contain continu-
ous measurements—are needed. In addition, compar-
isons with more sophisticated variants of the EM al-
gorithm such as EM with conjugate-gradient accelera-
tion (Thiesson, 1995) and the EMν algorithm (Bauer,
Koller, & Singer, 1997) should be performed.



Table 7: Performance of the EM algorithm when initialized by the Random, Marginal, and HAC methods on
the digit6 dataset (average and standard deviation over 12 or more runs).

Initialization Random Marginal HAC HAC HAC

N ′ = 100 N ′ = 300 N ′ = N = 700
Marginal L -35.063 -35.089 -35.091 -35.087 -35.073
(bits/case) ±0.040 ±0.042 ± 0.047 ±0.042
Holdout L -32.53 -32.36 -32.04 -32.18 -32.27
(bits/case) ±0.255 ±0.224 ±0.513 ±0.238
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