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Abstract

Recently several researchers have investi-
gated techniques for using data to learn
Bayesian networks containing compact rep-
resentations for the conditional probability
distributions (CPDs) stored at each node.
The majority of this work has concentrated
on using decision-tree representations for
the CPDs. In addition, researchers typi-
cally apply non-Bayesian (or asymptotically
Bayesian) scoring functions such as MDL to
evaluate the goodness-of-fit of networks to
the data.

In this paper we investigate a Bayesian ap-
proach to learning Bayesian networks that
contain the more general decision-graph rep-
resentations of the CPDs. First, we describe
how to evaluate the posterior probability—
that is, the Bayesian score—of such a net-
work, given a database of observed cases.
Second, we describe various search spaces
that can be used, in conjunction with a scor-
ing function and a search procedure, to iden-
tify one or more high-scoring networks. Fi-
nally, we present an experimental evaluation
of the search spaces, using a greedy algorithm
and a Bayesian scoring function.

1 INTRODUCTION

Given a set of observations in some domain, a com-
mon problem that a data analyst faces is to build one
or more models of the process that generated the data.
In the last few years, researchers in the UAI commu-
nity have contributed an enormous body of work to
this problem, using Bayesian networks as the model of
choice. Recent works include Cooper and Herskovits

(1992), Buntine (1991), Spiegelhalter et. al (1993),
and Heckerman et al. (1995).

A substantial amount of the early work on learn-
ing Bayesian networks has used observed data to in-
fer global independence constraints that hold in the
domain of interest. Global independences are pre-
cisely those that follow from the missing edges within
a Bayesian-network structure. More recently, re-
searchers (including Boutilier et al., 1995 and Fried-
man and Goldszmidt, 1996) have extended the “clas-
sical” definition of a Bayesian network to include effi-
cient representations of local constraints that can hold
among the parameters stored in the nodes of the net-
work. Two notable features about the this recent work
are (1) the majority of effort has concentrated on infer-
ring decision trees, which are structures that can ex-
plicitly represent some parameter equality constraints
and (2) researchers typically apply non-Bayesian (or
asymptotically Bayesian) scoring functions such as
MDL as to evaluate the goodness-of-fit of networks
to the data.

In this paper, we apply a Bayesian approach to learn-
ing Bayesian networks that contain decision-graphs—
generalizations of decision trees that can encode ar-
bitrary equality constraints—to represent the condi-
tional probability distributions in the nodes.

In Section 2, we introduce notation and previous rel-
evant work. In Section 3 we describe how to evaluate
the Bayesian score of a Bayesian network that contains
decision graphs. In Section 4, we investigate how a
search algorithm can be used, in conjunction with a
scoring function, to identify these networks from data.
In Section 5, we use data from various domains to
evaluate the learning accuracy of a greedy search algo-
rithm applied the search spaces defined in Section 4.
Finally, in Section 6, we conclude with a discussion of
future extensions to this work.



2 BACKGROUND

In this section, we describe our notation and discuss
previous relevant work. Throughout the remainder of
this paper, we use lower-case letters to refer to vari-
ables, and upper-case letters to refer to sets of vari-
ables. We write xi = k when we observe that variable
xi is in state k. When we observe the state of ev-
ery variable in a set X , we call the set of observations
a state of X . Although arguably an abuse of nota-
tion, we find it convenient to index the states of a
set of variables with a single integer. For example, if
X = {x1, x2} is a set containing two binary variables,
we may write X = 2 to denote {x1 = 1, x2 = 0}.

In Section 2.1, we define a Bayesian network. In Sec-
tion 2.2 we describe decision trees and how they can be
used to represent the probabilities within a Bayesian
network. In Section 2.3, we describe decision graphs,
which are generalizations of decision trees.

2.1 BAYESIAN NETWORKS

Consider a domain U of n discrete variables x1, . . . , xn,
where each xi has a finite number of states. A Bayesian
network for U represents a joint probability distribu-
tion over U by encoding (1) assertions of conditional
independence and (2) a collection of probability distri-
butions. Specifically, a Bayesian network B is the pair
(BS , Θ), where BS is the structure of the network, and
Θ is a set of parameters that encode local probability
distributions.

The structure BS has two components: the global

structure G and a set of local structures M . G is an
acyclic, directed graph—dag for short—that contains
a node for each variable xi ∈ U . The edges in G de-
note probabilistic dependences among the variables in
U . We use Par(xi) to denote the set of parent nodes
of xi in G. We use xi to refer to both the variable in
U and the corresponding node in G. The set of local
structures M = {M1, . . . , Mn} is a set of n mappings,
one for each variable xi, such that Mi maps each value
of {xi, Par(xi)} to a parameter in Θ.

The assertions of conditional independence implied by
the global structure G in a Bayesian network B impose
the following decomposition of the joint probability
distribution over U :

p(U |B) =
∏

i

p(xi|Par(xi), Θ, Mi,G) (1)

The set of parameters Θ contains—for each node xi,
for each state k of xi, and for each parent state j—
a single parameter1 Θ(i, j, k) that encodes the condi-
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Figure 1: Bayesian network for U = {x, y, z}

tional probabilities given in Equation 1. That is,

p(xi = k|Par(xi) = j, Θ, Mi,G) = Θ(i, j, k) (2)

Note that the function Θ(i, j, k) depends on both Mi

and G. For notational simplicity we leave this depen-
dency implicit.

Let ri denote the number of states of variable xi, and
let qi denote the number of states of the set Par(xi).
We use Θij to denote the set of parameters character-
izing the distribution p(xi|Par(xi) = j, Θ, Mi,G):

Θij = ∪ri

k=1Θ(i, j, k)

We use Θi to denote the set of parameters
characterizing all of the conditional distributions
p(xi|Par(xi), Θ, Mi,G):

Θi = ∪qi

j=1Θij

In the “classical” implementation of a Bayesian net-
work, each node xi stores (ri − 1) · qi distinct param-
eters in a large table. That is, Mi is simply a lookup
into a table. Note that the size of this table grows
exponentially with the number of parents qi.

2.2 DECISION TREES

There are often equality constraints that hold among
the parameters in Θi, and researchers have used map-
pings other than complete tables to more efficiently
represent these parameters. For example, consider the
global structure G depicted in Figure 1, and assume
that all nodes are binary. Furthermore, assume that if
x = 1, then the value of z does not depend on y. That
is,

p(z|x = 1, y = 0, Θ, Mz,G) = p(z|x = 1, y = 1, Θ, Mz,G)

Using the decision tree shown in Figure 2 to imple-
ment the mapping Mz, we can represent p(z|x =
1, y, Θ, MZ) using a single distribution for both
p(z|x = 1, y = 0, Θ, Mz,G) and p(z|x = 1, y =
1, Θ, Mz,G).

be one, Θ will actually only contain ri − 1 distinct param-
eters for this distribution. For simplicity, we leave this
implicit for the remainder of the paper.
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Figure 2: Decision tree for node z

Decision trees, described in detail by Breiman (1984),
can be used to represent sets of parameters in a
Bayesian network. Each tree is a dag containing ex-
actly one root node, and every node other than the
root node has exactly one parent. Each leaf node con-
tains a table of k − 1 distinct parameters that col-
lectively define a conditional probability distribution
p(xi|Par(xi), Θ, Mi,D). Each non-leaf node in the
tree is annotated with the name of one of the parent
variables π ∈ Par(xi). Out-going edges from a node π

in the tree are annotated with mutually exclusive and
collectively exhaustive sets of values for the variable
π.

When a node v in a decision tree is annotated with
the name π, we say that v splits π. If the edge from v1

to child v2 is annotated with the value k, we say that
v2 is the child of v1 corresponding to k. Note that by
definition of the edge annotations, the child of a node
corresponding to any value is unique.

We traverse the decision tree to find the parameter
Θ(i, j, k) as follows. First, initialize v to be the root
node in the decision tree. Then, as long as v is not a
leaf, let π be the node in Par(xi) that v splits, and
reset v to be the child of v corresponding to the value
of π—determined by Par(xi) = j—and repeat. If v is
a leaf, we we return the parameter in the table corre-
sponding to state k of xi.

Decision tree are more expressive mappings than com-
plete tables, as we can represent all of the parameters
from a complete table using a complete decision tree. A
complete decision tree Ti for a node xi is a tree of depth
|Par(xi)|, such that every node vl at level l in Ti splits
on the lth parent πl ∈ Par(xi) and has exactly rπl

children, one for each value of π. It follows by this def-
inition that if Ti is a complete tree, then Θ(i, j, k) will
map to a distinct parameter for each distinct {i, j},
which is precisely the behavior of a complete table.

Researchers have found that decision trees are useful
for eliciting probability distributions, as experts of-
ten have extensive knowledge about equality of con-

ditional distributions. Furthermore, many researchers
have developed methods for learning these local struc-
tures from data.

2.3 DECISION GRAPHS

In this section we describe a generalization of the de-
cision tree, known as a decision graph, that can rep-
resent a much richer set of equality constraints among
the local parameters. A decision graph is identical to a
decision tree except that, in a decision graph, the non-
root nodes can have more than one parent. Consider,
for example, the decision graph depicted in Figure 3.
This decision graph represents a conditional probabil-
ity distribution p(z|x, y, Θ) for the node z in Figure
1 that has different equality constraints than the tree
shown in Figure 2. Specifically, the decision graph en-
codes the equality

p(z|x = 0, y = 1, Θ) = p(z|x = 1, y = 0, Θ)
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Figure 3: Decision graph for node z

We use Di to denote a decision graph for node xi.
If the mapping in a node xi is implemented with Di,
we use Di instead of Mi to denote the mapping. A
decision-graph Di can explicitly represent an arbitrary
set of equality constraints of the form

Θij = Θij′ (3)

for j 6= j′. To demonstrate this, consider a complete
tree Ti for node xi. We can transform Ti into a decision
graph that represents all of the desired constraints by
simply merging together any leaf nodes that contain
sets that are equal.

It is interesting to note that any equality constraint of
the form given in Equation 3 can also be interpreted
as the following independence constraint:

xi ⊥⊥ Par(xi) | Par(xi) = j or Par(xi) = j′

If we allow nodes in a decision graph Di to split on
node xi as well as the nodes in Par(xi), we can rep-
resent an arbitrary set of equality constraints among



the parameters Θi. We return to this issue in Section
6, and assume for now that nodes in Di do not split
on xi.

3 LEARNING DECISION GRAPHS

Many researchers have derived the Bayesian measure-
of-fit—herein called the Bayesian score—for a network,
assuming that there are no equalities among the pa-
rameters. Friedman and Goldszmidt (1996) derive
the Bayesian score for a structure containing deci-
sion trees. In this section, we show how to evaluate
the Bayesian score for a structure containing decision
graphs.

To derive the Bayesian score, we first need to make
an assumption about the process that generated the
database D. In particular, we assume that the
database D is a random (exchangeable) sample from
some unknown distribution ΘU , and that all of the
constraints in ΘU can be represented using a network
structure BS containing decision graphs.

As we saw in the previous section, the structure
BS = {G, M} imposes a set of independence con-
straints that must hold in any distribution represented
using a Bayesian network with that structure. We de-
fine Bh

S to be the hypothesis that (1) the independence
constraints imposed by structure BS hold in the joint
distribution ΘU from which the database D was gen-
erated, and (2) ΘU contains no other independence
constraints. We refer the reader to Heckerman et al.
(1994) for a more detailed discussion of structure hy-
potheses.

The Bayesian score for a structure BS is the posterior
probability of Bh

S , given the observed database D:

p(Bh
S |D) = c · p(D|Bh

S)p(Bh
S)

where c = 1
p(D) . If we are only concerned with the rel-

ative scores of various structures, as is almost always
the case, then the constant c can be ignored. Conse-
quently, we extend our definition of the Bayesian score
to be any function proportional to p(D|Bh

S)p(Bh
S).

For now, we assume that there is an efficient method
for assessing p(Bh

S) (assuming this distribution is uni-
form, for example), and concentrate on how to derive
the marginal likelihood term p(D|Bh

S). By integrating
over all of the unknown parameters Θ we have:

p(D|Bh
S) =

∫
Θ

p(Θ|Bh
S)p(D|Θ, Bh

S) (4)

Researchers typically make a number of simplifying
assumptions that collectively allow Equation 4 to be
expressed in closed form. Before introducing these as-
sumptions, we need the following notation.

As we showed in Section 2, if the local structure for a
node xi is a decision graph Di, then sets of parame-
ters Θij and Θij′ can be identical for j 6= j′. For the
derivations to follow, we find it useful to enumerate the
distinct parameter sets in Θi. Equivalently, we find it
useful to enumerate the leaves in a decision graph.

For the remainder of this section, we adopt the fol-
lowing syntactic convention. When referring to a pa-
rameter set stored in the leaf of a decision graph, we
use a to denote the node index, and b to denote the
parent-state index. When referring to a parameter set
in the context of a specific parent state of a node, we
use i to denote the node index and j to denote the
parent-state index.

To enumerate the set of leaves in a decision graph Da,
we define a set of leaf-set indices La. The idea is that
La contains exactly one parent-state index for each leaf
in the graph. More precisely, let l denote the number
of leaves in Da. Then La = {b1, . . . , bl} is defined as a
set with the following properties:

1. For all {b, b′} ⊆ La, b 6= b′ ⇒ Θa,b 6= Θa,b′

2. ∪b∈La
Θa,b = Θa

The first property ensures that each index in L cor-
responds to a different leaf, and the second property
ensures that every leaf is included.

One assumption used to derive Equation 4 in closed
form is the parameter independence assumption. Sim-
ply stated, this assumption says that given the hypoth-
esis Bh

S , knowledge about any distinct parameter set
Θab does not give us any information about any other
distinct parameter set.

Assumption 1 (Parameter Independence)

p(Θ|Bh
S) =

n∏
a=1

∏
b∈La

p(Θab|B
h
S)

Another assumption that researchers make is the
Dirichlet assumption. This assumption restricts the
prior distributions over the distinct parameter sets to
be Dirichlet.

Assumption 2 (Dirichlet)
For all a and for all b ∈ La,

p(Θab|B
h
S) ∝

ra∏
c=1

Θαabc−1
abc

where αabc > 0 for 1 ≤ c ≤ ra

Recall that ra denotes the number of states for node
xa. The hyperparameters αabc characterize our prior



knowledge about the parameters in Θ. Heckerman et
al. (1995) describe how to derive these exponents from
a prior Bayesian network. We return to this issue later.

Using these assumptions, we can derive the Bayesian
score for a structure that contains decision graphs by
following a completely analogous method as Hecker-
man et al. (1995). Before showing the result, we must
define the inverse function of Θ(i, j, k). Let θ denote
an arbitrary parameter in Θ. The function Θ−1(θ) de-
notes the set of index triples that Θ() maps into θ.
That is,

Θ−1(θ) = {i, j, k|Θ(i, j, k) = θ}

Let Dijk denote the number of cases in D for which
xi = k and Par(xi) = j. We define Nabc as follows:

Nabc =
∑

ijk∈Θ−1(θabc)

Dijk

Intuitively, Nabc is the number of cases in D that pro-
vide information about the parameter θabc. Letting
Nab =

∑
c Nabc and αab =

∑
c αabc, we can write the

Bayesian score as follows:

p(D, Bh
S) = p(Bh

S)

n∏
a=1

∏
b∈La

Γ(αab)

Γ(Nab + αab)

·

|ra|∏
c=1

Γ(Nabc + αabc)

Γ(αabc)
(5)

We can determine all of the counts Nabc for each node
xa as follows. First, initialize all the counts Nabc to
zero. Then, for each case C in the database, let kC

and jC denote the value for xi and Par(xi) in the
case, respectively, and increment by one the count
Nabc corresponding to the parameter θabc = p(xi =
kC |Par(xi) = jC , Θ,Da). Each such parameter can
be found efficiently by traversing Da from the root.

We say a scoring function is node decomposable if it
can be factored into a product of functions that de-
pend only a node and its parents. Node decompos-
ability is useful for efficiently searching through the
space of global-network structures. Note that Equa-
tion 5 is node decomposable as long as p(Bh

S) is node
decomposable.

We now consider some node-decomposable distribu-
tions for p(Bh

S). Perhaps the simplest distribution is
to assume a uniform prior over network structures.
That is, we set p(Bh

S) to a constant in Equation 5.
We use this simple prior for the experiments described
in Section 5. Another approach is to (a-priori) favor
networks with fewer parameters. For example, we can
use

p(Bh
S) ∝ κ|Θ| =

n∏
a=1

κ|Θa| (6)

where 0 < κ <= 1. Note that κ = 1 corresponds to
the uniform prior over all structure hypotheses.

A simple prior for the parameters in Θ is to assume
αabc = 1 for all a, b, c. This choice of values corre-
sponds to a uniform prior over the parameters, and
was explored by Cooper and Herskovits (1992) in the
context of Bayesian networks containing complete ta-
bles. We call the Bayesian scoring function the uni-

form scoring function if all the hyperparameters are
set to one. We have found that this prior works well
in practice and is easy to implement.

Using two additional assumptions, Heckerman et al.
(1995) show that each αabc can be derived from a prior

Bayesian network. The idea is that αabc is propor-
tional to the prior probability, obtained from the prior
network, of all states of {xi = k, Par(xi) = j} that
map to the parameter θabc. Specifically, if BP is our
prior Bayesian network, we set

αabc = α
∑

ijk∈Θ−1(θabc)

p(xi = k, Par(xi) = j|BP )

where α is a single equivalent sample size used to asses
all of the exponents, and Par(xi) denotes the parents
of xi in G (as opposed to the parents in the prior net-
work). α can be understood as a measure of confi-
dence that we have for the parameters in BP . We call
the Bayesian scoring function the PN scoring function

(P rior Network scoring function) if the exponents are
assessed this way. Heckerman et al. (1995) derive
these constraints in the context of Bayesian networks
with complete tables. In the full version of this paper,
we show that these constraints follow when using de-
cision graphs as well, with only slight modifications to
the additional assumptions.

Although we do not provide the details here, we can
use the decision-graph structure to efficiently compute
the exponents αabc from the prior network in much
the same way we computed the Nabc values from the
database.

4 SEARCH

Given a scoring function that evaluates the merit of
a Bayesian-network structure BS , learning Bayesian
networks from data reduces to a search for one or more
structures that have a high score. Chickering (1995)
shows that finding the optimal structure containing
complete tables for the mappings M is NP-hard when
using a Bayesian scoring function. Given this result,
it seems reasonable to assume that by allowing (the
more general) decision-graph mappings, the problem
remains hard, and consequently it is appropriate to
apply heuristic search techniques.



In Section 4.1, we define a search space over decision-
graph structures within a single node xi, assuming
that the parent set Par(xi) is fixed. Once such a space
is defined, we can apply to that space any number of
well-known search algorithms. For the experiments
described in Section 5, for example, we apply greedy
search.

In Section 4.2 we describe a greedy algorithm that
combines local-structure search over all the decision
graphs in the nodes with a global-structure search over
the edges in G.

4.1 DECISION-GRAPH SEARCH

In this section, we assume that the states of our search
space correspond to all of the possible decision graphs
for some node xi. In order for a search algorithm to
traverse this space, we must define a set of operators
that transform one state into another.

There are three operators we define, and each opera-
tor is a modification to the current set of leaves in a
decision graph.

Definition (Complete Split)
Let v be a leaf node in the decision graph, and let π ∈
Par(xi) be a parent of xi. A complete split C(v, π)
adds ri new leaf nodes as children to v, where each

child of v corresponds to a distinct value of π.

Definition (Binary Split)
Let v be a leaf node in the decision graph, and let π ∈
Par(xi) be a parent of xi. A binary split B(v, π, k)
adds 2 new leaf nodes as children to v, where the first

child corresponds to state k of π, and the other child

corresponds to all other states of π.

Definition (Merge)
Let v1 and v2 be two distinct leaf nodes in the decision

graph. A Merge M(v1, v2) merges the v1 and v2 into

a single node. That is, the resulting node inherits all

parents from both v1 and v2.

In Figure 4, we show the result of each type of operator
to a decision graph for a node z with parents x and y,
where x and y both have three states.

We add the pre-condition that the operator must
change the parameter constraints implied by the de-
cision graph. We would not allow, for example, a
complete split C(v1, y) in Figure 4a: two of v1’s new
children would correspond to impossible states of y

({y = 0 and y = 1} and {y = 0 and y = 2}), and
the third child would correspond to the original con-
straints at v1 ({y = 0 and y = 0}).

Note that starting from a decision graph containing a
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Figure 4: Example of the application of each type of
operator: (a) the original decision graph, (b) the re-
sult of applying C(v3, x), (c) the result of applying
B(v3, x, 0), and (d) the result of applying M(v2, v3)

single node (both the root and a leaf node), we can
generate a complete decision tree by repeatedly ap-
plying complete splits. As discussed in the previous
section, we can represent any parameter-set equalities
by merging the leaves of a complete decision tree. Con-
sequently, starting from a graph containing one node
there exists a series of operators that result in any set
of possible parameter-set equalities. Note also that if
we repeatedly merge the leaves of a decision graph un-
til there is a single parameter set, the resulting graph
is equivalent (in terms of parameter equalities) to the
graph containing a single node. Therefore, our op-
erators are sufficient for moving from any set of pa-
rameter constraints to any other set of parameter con-
straints. Although we do not discuss them here, there
are methods that can simplify (in terms of the number
of nodes) some decision graphs such that they repre-
sent the same set of parameter constraints.

The complete-split operator is actually not needed to
ensure that all parameter equalities can be reached:
any complete split can be replaced by a series of binary
splits such that the resulting parameter-set constraints
are identical. We included the complete-split operator
in the hopes that it would help lead the search algo-
rithm to better structures. In Section 5, we compare
greedy search performance in various search spaces de-
fined by including only subsets of the above operators.

4.2 COMBINING GLOBAL AND LOCAL
SEARCH

In this section we describe a greedy algorithm that
combines global-structure search over the edges in G



with local-structure search over the decision graphs in
all of the nodes of G.

Suppose that in the decision-graph Di for node xi,
there is no non-leaf node annotated with some parent
π ∈ Par(xi). In this case, xi is independent of π

given its other parents, and we can remove π from
Par(xi) without violating the decomposition given in
Equation 1. Thus given a fixed structure, we can learn
all the local decision graphs for all of the nodes, and
then delete those parents that are independent. We
can also consider adding edges as follows. For each
node xi, add to Par(xi) all non-descendants of xi in
G, learn a decision graph for xi, and then delete all
parents that are not contained in the decision graph.
Figure 5 shows a greedy algorithm that uses combines
these two ideas. In our experiments, we started the
algorithm with a structure for which G contains no
edges, and each graph Di consists of a single root node.

1. Score the current network structure BS

2. For each node xi in G

3. Add every non-descendant that is not a parent
of xi to Par(xi)

4. For every possible operator O to the decision
graph Di

5. Apply O to BS

6. Score the resulting structure

7. Unapply O

8. Remove any parent that was added to xi in
step 3

9. If the best score from step 6 is better than the
current score

10. Let O be the operator that resulted in the best
score

11. If O is a split operator (either complete or bi-
nary) on a node xj that is not in Par(xi), then
add xj to Par(xi)

12. Apply O to BS

13. Goto 1

14. Otherwise, return BS

Figure 5: Greedy algorithm that combines local and
global structure search

Note that as a result of a merge operator in a decision
graph Di, xi may be rendered independent from one
of its parents π ∈ Par(xi), even if Di contains a node
annotated with π. For a simple example, we could
repeatedly merge all leaves into a single leaf node,
and the resulting graph implies that xi does not de-
pend on any of its parents. We found experimentally
that—when using the algorithm from Figure 5—this
phenomenon is rare. Because testing for these parent
deletions is expensive, we chose to not check for them

in the experiments described in Section 5.

Another greedy approach for learning structures con-
taining decision trees has been explored by Friedman
and Goldszmidt (1996). The idea is to score edge op-
erations in G (adding, deleting, or reversing edges) by
applying the operation and then greedily learning the
local decision trees for any nodes who’s parents have
changed as a result of the operation. In the full version
of the paper, we compare our approach to theirs.

5 EXPERIMENTAL RESULTS

In this section we investigate how varying the set of
allowed operators affects the performance of greedy
search. By disallowing the merge operator, the search
algorithms will identify decision-tree local structures in
the Bayesian network. Consequently, we can see how
learning accuracy changes, in the context of greedy
search, when we generalize the local structures from
decision trees to decision graphs.

In all of the experiments described in this section, we
measure learning accuracy by the posterior probability
of the identified structure hypotheses. Researchers of-
ten use other criteria, such as predictive accuracy on a
holdout set or structural difference from some genera-
tive model. The reason that we do not use any of these
criteria is that we are evaluating how well the search

algorithm performs in various search spaces, and the
goal of the search algorithm is to maximize the scoring

function. We are not evaluating how well the Bayesian
scoring functions approximate some other criteria.

In our first experiment, we consider the Promoter

Gene Sequences database from the UC Irvine collec-
tion, consisting of 106 cases. There are 58 variables
in this domain. 57 of these variables, {x1, . . . , x57}
represent the “base-pair” values in a DNA sequence,
and each has four possible values. The other variable,
promoter, is binary and indicates whether or not the
sequence has promoter activity. The goal of learning in
this domain is to build an accurate model of the distri-
bution p(promoter|x1, . . . , x57), and consequently it is
reasonable to consider a static graphical structure for
which Par(promoter) = {x1, . . . , x57}, and search for
a decision graph in node promoter.

Table 1 shows the relative Bayesian scores for the best
decision graph learned, using a greedy search with var-
ious parameter priors and search spaces. All searches
started with a decision graph containing a single node,
and the current best operator was applied at each step
until no operator increased the score of the current
state. Each column corresponds to a different restric-
tion of the search space described in Section 4.1: the
labels indicate what operators the greedy search was



Table 1: Greedy search performance for various
Bayesian scoring functions, using different sets of op-
erators, in the Promoter domain.

C B CB CM BM CBM
uniform 0 13.62 6.07 22.13 26.11 26.11
U-PN 10 0 6.12 4.21 9.5 10.82 12.93
U-PN 20 0 5.09 3.34 14.11 12.11 14.12
U-PN 30 0 4.62 2.97 10.93 12.98 16.65
U-PN 40 0 3.14 1.27 16.3 13.54 16.02
U-PN 40 0 2.99 1.12 15.76 15.54 17.54

allowed to use, where C denotes complete splits, B
denotes binary splits, and M denotes merges. The col-
umn labeled BM, for example, shows the results when
a greedy search used binary splits and merges, but
not complete splits. Each row corresponds to a differ-
ent parameter-prior for the Bayesian scoring function.
The U-PN scoring function is a special case of the PN
scoring function for which the prior network imposes
a uniform distribution over all variables. The num-
ber following the U-PN in the row labels indicates the
equivalent-sample size α. All results use a uniform
prior over structure hypotheses. A value of zero in a
row of the table denotes the hypothesis with lowest
probability out of all those identified using the given
parameter prior. All other values denote the natural
logarithm of how many times more likely the identified
hypothesis is than the one with lowest probability.

By comparing the relative values between searches
that use merges and searches that don’t use merges,
we see that without exception, adding the merge oper-
ator results in a significantly more probable structure
hypothesis. We can therefore conclude that a greedy
search over decision graphs results in better solutions
than a greedy search over decision trees. An interest-
ing observation is that complete-split operator actually
reduces solution quality when we restrict the search to
decision trees.

We performed an identical experiment to another clas-
sification problem, but for simplicity we only present
the results for the uniform scoring function. Recall
from Section 3 that the uniform scoring function has
all of the hyperparameters αabc set to one. This second
experiment was run with the Splice-junction Gene Se-

quences database, again from the UC Irvine repository.
This database also contains a DNA sequence, and the
problem is to predict whether the position in the mid-
dle of the sequence is an “intron-exon” boundary, an
“exon-intron” boundary, or neither. The results are
given in Table 2. We used the same uniform prior for
structure hypotheses.

Table 2: Greedy search performance for the uniform
scoring function, using different sets of operators, in
the Splice domain.

C B CB CM BM CBM
0 383 363 464 655 687

Table 3: Greedy search performance for the uniform
scoring function for each node in the ALARM network.
Also included is the uniform score for the complete-
table model

COMP C B CB CM BM CBM
0 134 186 165 257 270 270

Table 2 again supports the claim that we get a signifi-
cant improvement by using decision graphs instead of
decision trees.

Our final set of experiments were done in the ALARM
domain, a well-known benchmark for Bayesian-
network learning algorithms. The ALARM network,
described by Beinlich et al. (1989), is a hand-
constructed Bayesian network used for diagnosis in a
medical domain. The parameters of this network are
stored using complete tables.

In the first experiment for the ALARM domain, we
demonstrate that for a fixed global structure G, the
hypothesis identified by searching for local decision
graphs in all the nodes can be significantly better than
the hypothesis corresponding to complete tables in the
nodes. We first generated 1000 cases from the ALARM
network, and then computed the uniform Bayesian
score for the ALARM network, assuming that the pa-
rameter mappings M are complete tables. We expect
the posterior of this model to be quite good, because
we’re evaluating the generative model structure. Next,
using the uniform scoring function, we applied the six
greedy searches as in the previous experiments to iden-
tify good decision graphs for all of the nodes in the
network. We kept the global structure G fixed to be
identical to the global structure of the ALARM net-
work. The results are shown in Table 3, and the values
have the same semantics as in the previous two tables.
The score given in the first column labeled COMP is
the score for the complete-table model.

Table 3 demonstrates that search performance using
decision graphs can identify significantly better mod-
els than when just using decision trees. The fact that
the complete-table model attains such a low score (the
best hypothesis we found is e270 times more probable
than the complete-table hypothesis!) is not surpris-
ing upon examination of the probability tables stored



Table 4: Performance of greedy algorithm that com-
bines local and global structure search, using different
sets of operators, in the ALARM domain. Also in-
cluded is the result of a greedy algorithm that searches
for global structure assuming complete tables.

COMP C B CB CM BM CBM
255 0 256 241 869 977 1136

in the ALARM network: most of the tables contain
parameter-set equalities.

In the next experiment, we used the ALARM domain
to test the structure-learning algorithm given in Sec-
tion 4.2. We again generated a database of 1000 cases,
and used the uniform scoring function with a uniform
prior over structure hypotheses. We ran six versions
of our algorithm, corresponding to the six possible sets
of local-structure operators as in the previous exper-
iments. We also ran a greedy structure-search algo-
rithm that assumes complete tables in the nodes. We
initialized this search with a global network structure
with no edges, and the operators were single-edge mod-
ifications to the graph: deletion, addition and reversal.
In Table 4 we show the results. The column labeled
COMP corresponds to the greedy search over struc-
tures with complete tables.

Once again, we note that when we allow nodes to
contain decision graphs, we get a significant im-
provement in solution quality. Note that the search
over complete-table structures out-performed our al-
gorithm when we restricted the algorithm to search
for decision trees containing either (1) only complete
splits or (2) complete splits and binary splits.

In our final experiment, we repeated the previous ex-
periment, except that we only allowed our algorithm
to add parents that are not descendants in the gener-
ative model. That is, we restricted the global search
over G to those dags that did not violate the partial or-
dering in the ALARM network. We also ran the same
greedy structure-search algorithm that searches over
structures with complete tables, except we initialized
the search with the ALARM network. The results of
this experiment are shown in Table 5. From the table,
we see that the constrained searches exhibit the same
relative behavior as the unconstrained searches.

For each experiment in the ALARM domain (Tables
3, 4, and 5) the values presented measure the perfor-
mance of search relative to the worst performance in
that experiment. In Table 6, we compare search per-
formance across all experiments in the ALARM do-
main. That is, a value of zero in the table corresponds
to the experiment and set of operators that led to the

Table 5: Performance of a restricted version of our
greedy algorithm, using different sets of operators, in
the ALARM domain. Also included is the result of
a greedy algorithm, initialized with the global struc-
ture of the ALARM network, that searches for global
structure assuming complete tables.

COMP C B CB CM BM CBM
0 179 334 307 553 728 790

Table 6: Comparison of Bayesian scores for all exper-
iments in the ALARM domain

COMP C B CB CM BM CBM
S 278 412 464 443 534 548 548
U 255 0 256 241 869 976 1136
C 336 515 670 643 889 1064 1126

learned hypothesis with lowest posterior probability,
out of all experiments and operator restrictions we
considered in the ALARM domain. All other values
given in the table are relative to this (lowest) posterior
probability. The row labels correspond to the experi-
ment: S denotes the first experiment that performed
local searches in a static global structure, U denotes
the second experiment that performed unconstrained
structural searches, and C denotes the final experiment
that performed constrained structural search.

Rather surprising, each hypothesis learned using
global-structure search with decision graphs had a
higher posterior than every hypothesis learned using
the generative static structures.

6 DISCUSSION

In this paper we showed how to derive the Bayesian
score of a network structure that contains parameter
maps implemented as decision graphs. We defined a
search space for learning individual decision graphs
within a static global structure, and defined a greedy
algorithm that searches for both global and local struc-
ture simultaneously. We demonstrated experimentally
that greedy search over structures containing decision
graphs significantly outperforms greedy search over
both (1) structures containing complete tables and (2)
structures containing decision trees.

We now consider an extension to the decision graph
that we mentioned in Section 2.3. Recall that in a de-
cision graph, the parameter sets are stored in a table
within the leaves. When decision graphs are imple-
mented this way, any parameter θabc must belong to
exactly one (distinct) parameter set. An important



consequence of this property is that if the priors for
the parameter sets are Dirichlet (Assumption 2), then
the posterior distributions are Dirichlet as well. That
is, the Dirichlet distribution is conjugate with respect
to the likelihood of the observed data. As a result, it is
easy to derive the Bayesian scoring function in closed
form.

If we allow nodes within a decision graph Di to split
on node xi, we can represent an arbitrary set of pa-
rameter constraints of the form Θ(i, j, k) = Θ(i, j′, k′)
for j 6= j′ and k 6= k′. For example, consider a Baysian
network for the two-variable domain {x, y}, where x is
a parent of y. We can use a decision graph for y that
splits on y to represent the constraint

p(y = 1|x = 0, Θ,Dy,G) = p(y = 0|x = 1, Θ,Dy,G)

Unfortunately, when we allow these types of con-
straints, the Dirichlet distribution is no longer conju-
gate with respect to the likelihood of the data, and the
parameter independence assumption is violated. Con-
sequently, the derivation described in Section 3 will
not apply. Conjugate priors for a decision graph Di

that splits on node xi do exist, however, and in the
full version of this paper we use a weaker version of
parameter independence to derive the Bayesian score
for these graphs in closed form.

We conclude by noting that it is easy to extend the def-
inition of a network structure to represent constraints
between the parameters of different nodes in the net-
work, e.g. Θij = Θi′j′ for i 6= i′. Both Buntine
(1994) and Thiesson (1995) consider these types of
constraints. The Bayesian score for such structures
can be derived by simple modifications to the approach
described in this paper.
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