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Abstract

Graphical techniques for modeling the dependencies of random variables have been

explored in a variety of di�erent areas including statistics, statistical physics, arti�-

cial intelligence, speech recognition, image processing, and genetics. Formalisms for

manipulating these models have been developed relatively independently in these re-

search communities. In this paper we explore hidden Markov models (HMMs) and

related structures within the general framework of probabilistic independence networks

(PINs). The paper contains a self-contained review of the basic principles of PINs. It is

shown that the well-known forward-backward (F-B) and Viterbi algorithms for HMMs

are special cases of more general inference algorithms for arbitrary PINs. Furthermore,

the existence of inference and estimation algorithms for more general graphical models

provides a set of analysis tools for HMM practitioners who wish to explore a richer class

of HMM structures. Examples of relatively complex models to handle sensor fusion and

coarticulation in speech recognition are introduced and treated within the graphical

model framework to illustrate the advantages of the general approach.

1 Introduction

For multivariate statistical modeling applications, such as hidden Markov modeling for

speech recognition, the identi�cation and manipulation of relevant conditional indepen-

dence assumptions can be a useful tool for model-building and analysis. There has recently

�
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been a considerable amount of work exploring the relationships between conditional inde-

pendence in probability models and structural properties of related graphs. In particular,

the separation properties of a graph can be directly related to conditional independence

properties in a set of associated probability models.

The key point of this paper is that the analysis and manipulation of generalized HMMs

(more complex HMMs than the standard �rst-order model) can be facilitated by exploiting

the relationship between probability models and graphs. The major advantages to be gained

are in:

� Model Description: A graphical model provides a natural and intuitive medium for

displaying dependencies which exist between random variables. In particular, the

structure of the graphical model clari�es the conditional independencies in the asso-

ciated probability models, allowing model assessment and revision.

� Computational E�ciency: The graphical model is a powerful basis for specifying

e�cient algorithms for computing quantities of interest in the probability model, e.g.,

calculation of the probability of observed data given the model. These inference

algorithms can be speci�ed automatically once the initial structure of the graph is

determined.

We will refer to both probability models and graphical models. Each consists of struc-

ture and parameters. The structure of the model consists of the speci�cation of a set of

conditional independence relations for the probability model, or a set of (missing) edges in

the graph for the graphical model. The parameters of both the probability and graphical

models consist of the speci�cation of the joint probability distribution: in factored form for

the probability model and de�ned locally on the nodes of the graph in the graphical model.

The inference problem is that of the calculation of posterior probabilities of variables of

interest given observable data and given a speci�cation of the probabilistic model. The

related task of MAP identi�cation is the determination of the most likely state of a set of

unobserved variables, given observed variables and the probabilistic model. The learning

or estimation problem is that of determining the parameters (and possibly structure) of the

probabilistic model from data.

This paper reviews the applicability and utility of graphical modeling to HMMs. Sec-

tion 2 introduces the basic notation for probability models and associated graph structures.

Section 3 summarizes relevant results from the literature on probabilistic independence net-

works (or PINs for short), in particular, the relationships which exist between separation

in a graph and conditional independence in a probability model. Section 4 interprets the

standard �rst-order HMM in terms of PINs. In Section 5 the standard algorithm for in-

ference in a directed PIN is discussed and applied to the standard HMM in Section 6. A

result of interest is that the F-B and Viterbi algorithms are shown to be special cases of this

inference algorithm. Section 7 shows that the inference algorithms for undirected PINs are

essentially the same as those already discussed for directed PINs. Section 8 introduces more

complex HMM structures for speech modeling and analyzes them using the graphical model

framework. Section 9 reviews known estimation results for graphical models and discusses

their potential implications for practical problems in the estimation of HMM structures,

and Section 10 contains summary remarks.

2



2 Notation and Background

Let U = fX

1

; X

2

; . . . ; X

N

g represent a set of discrete-valued random variables. For the

purposes of this paper we restrict our attention to discrete-valued random variables, how-

ever, many of the results stated generalize directly to continuous and mixed sets of random

variables (Lauritzen and Wermuth 1989; Whittaker 1990). Let lower case x

i

denote one

of the values of variable X

i

: the notation

P

x

1

is taken to mean the sum over all possible

values of X

1

. Let p(x

i

) be shorthand for the particular probability p(X

i

= x

i

), whereas

p(X

i

) represents the probability function for X

i

(a table of values, since X

i

is assumed

discrete), 1 � i � N . The full joint distribution function is p(U) = p(X

1

; X

2

; . . . ; X

N

) and

p(u) = (x

1

; x

2

; . . . ; x

N

) denotes a particular value assignment for U. Note that this full

joint distribution p(U) = p(X

1

; X

2

; . . . ; X

N

) provides all the possible information one needs

to calculate any marginal or conditional probability of interest among subsets of U.

If A;B and C are disjoint sets of random variables, the conditional independence rela-

tion A ? BjC is de�ned such that that A is independent of B given C, i.e., p(A;BjC) =

p(AjC)p(BjC). Conditional independence is symmetric. Note also that marginal inde-

pendence (no conditioning) does not in general imply conditional independence, nor does

conditional independence in general imply marginal independence (Whittaker 1990).

With any set of random variables U we can associate a graph G de�ned as G = (V;E).

V denotes the set of vertices or nodes of the graph such that there is a one-to-one mapping

between the nodes in the graph and the random variables, i.e., V = fX

1

; X

2

; . . . ; X

N

g. E

denotes the set of edges, fe(i; j)g, where i and j are shorthand for the nodes X

i

and X

j

,

1 � i; j � N . Edges of the form e(i; i) are not of interest and thus are not allowed in the

graphs discussed in this paper.

An edge may be directed or undirected. Our convention is that a directed edge e(i; j)

is directed from node i to node j, in which case we sometimes say that i is a parent of its

child j. An ancestor of node i is a node which has as a child either i or another ancestor of

i. A subset of nodes A is an ancestral set if it contains its own ancestors. A descendant of

i is a either a child of i or a child of a descendant of i.

Two nodes i and j are adjacent in G if E contains the undirected or directed edge

e(i; j). An undirected path is a sequence of distinct nodes f1; . . . ; mg such that there exists

an undirected or directed edge for each pair of nodes fl; l+ 1g on the path. A directed path

is a sequence of distinct nodes f1; . . . ; mg such that there exists a directed edge for each

pair of nodes fl; l + 1g on the path. A graph is singly-connected if there exists only one

undirected path between any two nodes in the graph. A (un)directed cycle is a path such

the beginning and ending nodes on the (un)directed path are the same.

If E contains only undirected edges then the graph G is an undirected graph (UG). If E

contains only directed edges then the graph G is a directed graph (DG).

Two important classes of graphs for modeling probability distributions that we consider

in this paper are UGs and acyclic directed graphs (ADGs)|directed graphs having no

directed cycles. We note in passing that there exists a theory for graphical independence

models involving both directed and undirected edges (chain graphs, Whittaker 1990), but

these are not discussed here.

For an UG G, a subset of nodes C separates two other subsets of nodes A and B if every

path joining every pair of nodes i 2 A and j 2 B contains at least one node from C. For

ADGs analogous but somewhat more complicated separation properties exist.
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Figure 1: An example of a UPIN structure G which captures a particular set of conditional

independence relationships among the set of variables fX

1

; . . . ; X

6

g. For example, X

5

?

fX

1

; X

2

; X

4

; X

6

gjfX

3

g.

A graph G is complete if there are edges between all pairs of nodes. A cycle in an

undirected graph is chordless if no other than successive pairs of nodes in the cycle are

adjacent. An undirected graph G is triangulated if and only if the only chordless cycles

in the graph contain no more than three nodes. Thus, if one can �nd a chordless cycle of

length four or more, G is not triangulated. A clique in an undirected graph G is a subgraph

of G that is complete. A clique tree for G is a tree of cliques such that there is a one-to-one

correspondence between the cliques of G and the nodes of the tree.

3 Probabilistic Independence Networks

We briey review the relation between a probability model p(U) = p(X

1

; . . . ; X

N

) and a

probabilistic independence network structure G = (V;E). The results in this section are

largely summarized versions of material in Pearl (1988) and Whittaker (1990) .

A probabilistic independence network structure (PIN structure) G, is a graphical state-

ment of a set of conditional independence relations for a set of random variables U. Absence

of an edge e(i; j) in G implies some independence relation between X

i

and X

j

. Thus, a PIN

structure G is a particular way of specifying the independence relationships present in the

probability model p(U). We say that G implies a set of probability models p(U), denoted as

P

G

, i.e., p(U) 2 P

G

. In the reverse direction, a particular model p(U) embodies a particular

set of conditional independence assumptions which may or may not be representable in a

consistent graphical form. One can derive all of the conditional independence properties

and inference algorithms of interest for U without reference to graphical models. However,

as has been emphasized in the statistical and AI literature, and is reiterated in this paper

in the context of hidden Markov models, there are distinct advantages to be gained from

using the graphical formalism.
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3.1 Undirected Probabilistic Independence Networks (UPINs)

A UPIN is composed of both a UPIN structure and UPIN parameters. A UPIN structure

speci�es a set of conditional independence relations for a probability model in the form of

an undirected graph. UPIN parameters consist of numerical speci�cations of a particular

probability model consistent with the UPIN structure. Terms used in the literature to

described UPINs of one form or another include Markov random �elds (Isham 1981, Ge-

man and Geman 1984), Markov networks (Pearl 1988), Boltzmann machines (Hinton and

Sejnowski 1986), and log-linear models (Bishop, Fienberg, & Holland 1973).

3.1.1 Conditional Independence Semantics of UPIN Structures

Let A, B, and S be any disjoint subsets of nodes in an undirected graph (UG) G. G is

an undirected probabilistic independence network structure (UPIN structure) for p(U) if

for any A, B, and S such that S separates A and B in G, the conditional independence

relation A ? BjS holds in p(U). The set of all conditional independence relations implied

by separation in G constitute the (global) Markov properties of G. Figure 1 shows a simple

example of a UPIN structure for 6 variables.

Thus, separation in the UPIN structure implies conditional independence in the proba-

bility model, i.e., it constrains p(U) to belong to a set of probability models P

G

which obey

the Markov properties of the graph. Note that a complete UG is trivially a UPIN structure

for any p(U) in the sense that there are no constraints on p(U). G is a perfect undirected

map for p if G is a UPIN structure for p and all the conditional independence relations

present in p are represented by separation in G. For many probability models p there are

no perfect undirected maps. A weaker condition is that a UPIN structure G is minimal

for a probability model p(U) if the removal of any edge from G implies an independence

relation which is not present in the model p(U), i.e., the structure without the edge is no

longer a UPIN structure for p(U). Minimality is not equivalent to perfection (for UPIN

structures) since, for example, there exist probability models with independencies which

can not be represented as UPINs except for the complete UPIN structure. For example,

consider that X and Y are marginally independent, but conditionally dependent given Z,

e.g.,X and Y are two independent causal variables with a common e�ect Z. In this case the

complete graph is the minimal UPIN structure for fX; Y; Zg but it is not perfect because

of the presence of an edge between X and Y .

3.1.2 Probability Functions on UPIN structures

Given a UPIN structure G, the joint probability distribution for U can be expressed as a

simple factorization:

p(u) = p(x

1

; . . . ; x

N

) =

Y

V

C

a

C

(x

C

) (1)

where V

C

is the set of cliques of G, x

C

represents a assignment of values to the variables

in a particular clique C, and the a

C

(x

C

) are non-negative clique functions. (The domain

of each a

C

(x

C

) is the set of possible assignments of values to the variables in the clique C

and the range of a

C

(x

C

) is the semi-in�nite interval [0;1)). The set of clique functions

associated with a UPIN structure provides the numerical parameterization of the UPIN.

A UPIN is equivalent to a Markov random �eld (Isham 1981). In the Markov random

�eld literature the clique functions are generally referred to as \potential functions." A
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Figure 2: A triangulated version of the UPIN structure G from Figure 1.

related terminology, used in the context of the Boltzmann machine (Hinton & Sejnowski,

1986), is that of \energy function." The exponential of the negative energy of a con�guration

is a \Boltzmann factor." Scaling each Boltzmann factor by the sum across Boltzmann

factors (the partition function) yields a factorization of the joint density (the Boltzmann

distribution), i.e., a product of clique functions.

1

The advantage of de�ning clique functions

directly, rather than in terms of the exponential of an energy function, is that the range of

the clique functions can be allowed to contain zero. Thus Eq. 1 can represent con�gurations

of variables having zero probability.

A model p is said to be decomposable if it has a minimal UPIN structure G which is

triangulated (Figure 2). A UPIN structure G is decomposable if G is triangulated. For

the special case of decomposable models, G can be converted to a junction tree, which is a

tree of cliques of G arranged such that the cliques satisfy the running intersection property,

namely, that each node in G which appears in any two di�erent cliques also appears in all

cliques on the undirected path between these two cliques. Associated with each edge in the

junction tree is a separator S, such that S contains the variables in the intersection of the

two cliques which it links. Given a junction tree representation, one can factorize p(U) as

the product of clique marginals over separator marginals (Pearl 1988):

p(u) =

Q

C2V

C

p(x

C

)

Q

S2V

S

p(x

S

)

(2)

where p(x

C

) and p(x

S

) are the marginal (joint) distributions for the variables in clique C

and separator S respectively and V

C

and V

S

are the set of cliques and separators in the

junction tree.

This product representation is central to the results in the rest of the paper. It is the

basis of the fact that globally consistent probability calculations on U can be carried out

in a purely local manner. The mechanics of these local calculations will be described later

in the paper. At this point it is su�cient to note that the complexity of the local inference

1

A Boltzmann machine is a special case of a UPIN in which the clique functions can be decomposed into

products of factors associated with pairs of variables. If the Boltzmann machine is augmented to include

\higher-order" energy terms, one for each clique in the graph, then we have a general Markov random �eld

or UPIN, restricted to positive probability distributions due to the exponential form of the clique functions.
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algorithms scales as the sum of the sizes of the clique state-spaces (where a clique state-

space is equal to the product over each variable in the clique of the number of states of each

variable). Thus, local clique updating can make probability calculations on U much more

tractable than using \brute force" inference, if the model decomposes into relatively small

cliques.

Many probability models of interest may not be decomposable. However, we can de�ne

a decomposable cover G

0

for p such that G

0

is a triangulated, but not necessarily minimal,

UPIN structure for p. Since any UPIN G can be triangulated simply by addition of the

appropriate edges, one can always identify at least one decomposable cover G

0

. However, a

decomposable cover may not be minimal in that it can contain edges which obscure certain

independencies in the model p: for example, the complete graph is a decomposable cover for

all possible probability models p. For e�cient inference, the goal is to �nd a decomposable

coverG

0

such thatG

0

contains as few extra edges as possible over the original UPIN structure

G. Later we discuss a speci�c algorithm for �nding decomposable covers for arbitrary PIN

structures. All singly-connected UPIN structures imply probability models P

G

which are

decomposable.

Note that, given a particular probability model p and a UPIN G for p, the process of

adding extra edges to G to create a decomposable cover does not change the underlying

probability model p, i.e., the added edges are a convenience for manipulating the graphical

representation, but the underlying numerical probability speci�cations remain unchanged.

An important point is that decomposable covers have the running intersection property

and thus can be factored as in Equation 2: thus local clique updating is also possible with

non-decomposable models via this conversion. Once again, the complexity of such local

inference scales with the sum of the size of the clique state-spaces in the decomposable

cover.

In summary, any UPIN structure can be converted to a junction tree permitting inference

calculations to be carried out purely locally on cliques.

3.2 Directed Probabilistic Independence Networks (DPINs)

A DPIN is composed of both a DPIN structure and DPIN parameters. A DPIN structure

speci�es a set of conditional independence relations for a probability model in the form of

a directed graph. DPIN parameters consist of numerical speci�cations of a particular prob-

ability model consistent with the DPIN structure. DPINs are referred to in the literature

using di�erent names, including Bayes network, belief network, recursive graphical model,

causal (belief) network, and probabilistic (causal) network.

3.2.1 Conditional Independence Semantics of DPIN Structures

A DPIN structure is an ADG G

D

= (V;E) where there is a one-to-one correspondence

between V and the elements of the set of random variables U = fX

1

; . . . ; X

N

g.

It is convenient to de�ne the moral graph G

M

of G

D

as the undirected graph obtained

fromG

D

by placing undirected edges between all non-adjacent parents of each node and then

dropping the directions from the remaining directed edges (see Figure 3b for an example).

The term \moral" was coined to denote the \marrying" of \unmarried" (nonadjacent)

parents. The motivation behind this procedure will become clear when we discuss the

di�erences between DPINs and UPINs in Section 3.3 below. We shall also see later that
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(a)

X2 X3

X4

X6

X5

X1

X2 X3

X4

X6

X5

X1

(b)

Figure 3: (a) A DPIN structure G

D

which captures a set of independence relationships

among the set fX

1

; . . . ; X

5

g. For example, X

4

? X

1

jX

2

. (b) The moral graph G

M

for G

D

,

where the parents of X

4

have been linked.

this conversion of a DPIN into a UPIN is a convenient way to solve DPIN inference problems

by \transforming" the problem into an undirected graphical setting and taking advantage

of the general theory available for undirected graphical models.

We can now de�ne a DPIN as follows. Let A, B, and S be any disjoint subsets of nodes

in G

D

. G

D

is a DPIN structure for p(U) if for any A, B, and S such that S separates A and

B in G

D

, the conditional independence relation A ? BjS holds in p(U). This is the same

de�nition as for a UPIN structure except that separation has a more complex interpretation

in the directed context: S separates A from B in a directed graph if S separates A from B in

the moral (undirected) graph of the smallest ancestral set containing A, B, and S (Lauritzen

et al. 1990). It can be shown that this de�nition of a DPIN structure is equivalent to the

more intuitive statement that, given the values of its parents, a variable X

i

is independent

of all other nodes in the directed graph except for its descendants.

Thus, as with a UPIN structure, the DPIN structure implies certain conditional inde-

pendence relations, which in turn imply a set of probability models p 2 P

G

D
. Figure 3a

contains a simple example of a DPIN structure.

3.2.2 Probability Functions on DPINs

A basic property of a DPIN structure is that it implies a direct factorization of the joint

probability distribution p(U):

p(u) =

N

Y

i=1

p(x

i

jpa(x

i

)) (3)

where pa(x

i

) denotes a value assignment for the parents of X

i

. A probability model p can

be written in this factored form in a trivial manner by the conditioning rule. Note that

a directed graph containing directed cycles does not necessarily yield such a factorization,

hence the use of ADGs.
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X2

X3

X1
X2

X3

X1 X4

(a) (b)

Figure 4: (a) The DPIN structure to encode the fact that X

3

depends on X

1

and X

2

but

X

1

? X

2

. For example, consider that X

1

and X

2

are two independent coin ips and that

X

3

is a bell which rings when the ips are the same. There is no perfect UPIN structure

which can encode these dependence relationships. (b) A UPIN structure which encodes

X

1

? X

4

jfX

2

; X

3

g and X

2

? X

3

jfX

1

; X

4

g. There is no perfect DPIN structure which can

encode these dependencies.

There are many possible DPIN structures consistent with a particular probability model

p, potentially containing extra edges which hide true conditional independence relations.

Thus, one can de�ne minimal DPIN structures for p in a manner exactly equivalent to

that of UPIN structures: deletion of an edge in a minimal DPIN structure G

D

implies an

independence relation which does not hold in p 2 P

G

D
. Similarly, G

D

is a perfect DPIN

structure G for p if G

D

is a DPIN structure for p and all the conditional independence

relations present in p are represented by separation in G

D

. As with UPIN structures, min-

imal does not imply perfect for DPIN structures. For example, consider the independence

relations X

1

? X

4

jfX

2

; X

3

g and X

2

? X

3

jfX

1

; X

4

g: the minimal DPIN structure contains

an edge from X

3

to X

2

(see Figure 4(b)).

3.3 Di�erences between Directed and Undirected Graphical Representa-

tions

It is an important point that directed and undirected graphs possess di�erent conditional

independence semantics. There are common conditional independence relations which have

perfect DPIN structures but no perfect UPIN structures and vice-versa (see Figure 4 for

examples).

Does a DPIN structure have the sameMarkov properties as the UPIN structure obtained

by dropping all the directions on the edges in the DPIN structure? The answer is yes if

and only if the DPIN structure contains no subgraphs where a node has two or more non-

adjacent parents (Whittaker 1990; Pearl et al. 1990). In general, it can be shown that

if a UPIN structure G for p is decomposable (triangulated) then it has the same Markov

properties as some DPIN structure for p.

On a more practical level, DPIN structures are frequently used to encode causal in-

formation, i.e., to formally represent the belief that X

i

preceeds X

j

in some causal sense,

e.g., temporally. DPINs have found application in causal modelling in applied statistics

and arti�cial intelligence. Their popularity in these �elds stems from the fact that the joint

probability model can be speci�ed directly via Equation 3, i.e., via the speci�cation of con-
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ditional probability tables or functions (Spiegelhalter et al. 1991). In contrast, UPINs must

be speci�ed in terms of clique functions (as in Equation 1) which may not be as easy to

work with (cf. Geman and Geman (1984), Modestino and Zhang (1992) and Vandermeulen

et al. (1994) for examples of ad hoc design of clique functions in image analysis). UPINs

are more frequently used in problems such as image analysis and statistical physics where

associations are thought to be correlational rather than causal.

3.4 From DPINs to (Decomposable) UPINs

The moral UPIN structure G

M

(obtained from the DPIN structure G

D

) does not imply any

new independence relations which are not present in G

D

. As with triangulation, however,

the additional edges may obscure conditional independence relations which are implicit in

the numeric speci�cation of the original probability model p associated with the DPIN

structure G

D

. Furthermore, G

M

may not be triangulated (decomposable). By the addition

of appropriate edges, the moral graph can be converted to a (non-unique) triangulated

graph G

0

, namely a decomposable cover for G

M

. In this manner, for any probability model

p for which G

D

is a DPIN structure, one can construct a decomposable cover G

0

for p.

This mapping from DPIN structures to UPIN structures was �rst discussed in the con-

text of e�cient inference algorithms by Lauritzen and Spiegelhalter (1988). The advantage

of this mapping derives from the fact that analysis and manipulation of the resulting UPIN

is considerably more direct than dealing with the original DPIN. Furthermore, it has been

shown that many of the inference algorithms for DPINs are in fact special cases of inference

algorithms for UPINs and can be considerably less e�cient (Shachter et al. 1994).

4 Modeling HMMs as PINs

4.1 PINs for HMMs

In hidden Markov modeling problems (Baum and Petrie 1966; Poritz 1988; Rabiner 1989;

Huang, Ariki, and Jack 1990; Elliott, Aggoun, and Moore 1995) we are interested in the

set of random variables U = fH

1

; O

1

; H

2

; O

2

; . . . ; H

N�1

; O

N�1

; H

N

; O

N

g, where H

i

is a

discrete-valued hidden variable at index i, and O

i

is the corresponding discrete-valued

observed variable at index i, 1 � i � N (the results here can be directly extended to

continuous-valued observables). The index i denotes a sequence from 1 to N , for example,

discrete time steps. Note that O

i

is considered univariate for convenience: the extension to

the multivariate case with d observables is straightforward but is omitted here for simplicity

since it does not illuminate the conditional independence relationships in the HMM.

The well-known simple �rst-order HMM obeys the following two conditional indepen-

dence relations:

H

i

? fH

1

; O

1

; . . . ; H

i�2

; O

i�2

; O

i�1

gjH

i�1

; 2 � i � N (4)

and

O

i

? fH

1

; O

1

; . . . ; H

i�1

; O

i�1

gjH

i

; 2 � i � N (5)

We will refer to this \�rst-order" hidden Markov probability model as HMM(1,1): the

notation HMM(K; J) is de�ned such that the hidden state of the model is represented via

the conjoined con�guration of J underlying random variables and such that the model has

10
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Figure 5: (a) The PIN structure for HMM(1,1) (b) A corresponding junction tree.

O1 O2

H2

ON-1

HN-1

ON

HNH1

(a)

O1 O2

H2

ON-1

HN-1

ON

HNH1

(b)

Figure 6: DPIN structures for HMM(1,1): (a) the DPIN structure for the HMM(1,1) prob-

ability model, (b) a DPIN structure which is not a DPIN structure for the HMM(1,1)

probability model.

state memory of depth K. The notation will be clearer in later sections when we discuss

speci�c examples with K; J > 1.

Construction of a PIN for HMM(1,1) is particularly simple. In the undirected case, as-

sumption 1 requires that each stateH

i

is only connected toH

i�1

from the set fH

1

; O

1

; . . . ; H

i�2

; O

i�2

; O

i�1

g.

Assumption 2 requires that O

i

is only connected to H

i

. The resulting UPIN structure for

HMM(1,1) is shown in Figure 5a. This graph is singly-connected and thus implies a de-

composable probability model p for HMM(1,1), where the cliques are of the form fH

i

; O

i

g

and fH

i�1

; H

i

g (Figure 5b). In Section 5 we will see how the joint probability function

can be expressed as a product function on the junction tree, thus leading to a junction tree

de�nition of the familiar F-B and Viterbi inference algorithms.

For the directed case the connectivity for the DPIN structure is the same. It is natural

to choose the directions on the edges between H

i�1

and H

i

as going from i�1 to i (although

the reverse direction could also be chosen without changing the Markov properties of the

graph). The directions on the edges between H

i

and O

i

must be chosen as going from H

i

to O

i

rather than in the reverse direction (Figure 6a). In reverse (Figure 6b) the arrows

would imply that O

i

is marginally independent of H

i�1

which is not true in the HMM(1,1)

probability model. The proper direction for the edges implies the correct relation, namely

that O

i

is conditionally independent of H

i�1

given H

i

.

11



The DPIN structure for HMM(1,1) does not possess a subgraph with non-adjacent

parents. As stated earlier this implies that the implied independence properties of the

DPIN structure are the same as those of the corresponding UPIN structure obtained by

dropping the directions from the edges in the DPIN structure, and thus they both result in

the same junction tree structure (Figure 5b). Thus, for the HMM(1,1) probability model,

the minimal directed and undirected graphs possess the same Markov properties, i.e., imply

the same conditional independence relations. Furthermore, both PIN structures are perfect

maps for the directed and undirected cases respectively.

4.2 Inference and MAP Problems in HMMs

In the context of HMMs, the most common inference problem is the calculation of the

likelihood of the observed evidence given the model, i.e., p(o

1

; . . . ; o

N

jmodel), where the

o

1

; . . . ; o

N

denote observed values for O

1

; . . . ; O

N

. (In this section we will assume that we

are dealing with one particular model where the structure and parameters have already

been determined and, thus, we will not explicitly indicate conditioning on the model). The

\brute force" method for obtaining this probability would be to sum out the unobserved

state variables from the full joint probability distribution:

p(o

1

; . . . ; o

N

) =

X

h

1

;...;h

N

p(H

1

; o

1

; . . . ; H

N

; o

N

) (6)

where h

i

denotes the possible values of hidden variable H

i

.

In general, both of these computations scale as m

N

where m is the number of states

for each hidden variable. In practice, the F-B algorithm (Poritz 1988; Rabiner 1989) can

perform these inference calculations with much lower complexity, namely Nm

2

. The likeli-

hood of the observed evidence can be obtained with the forward step of the F-B algorithm:

calculation of the state posterior probabilities requires both forward and backward steps.

The F-B algorithm relies on a factorization of the joint probability function to obtain lo-

cally recursive methods. One of the key points in this paper is that the graphical modeling

approach provides an automatic method for determining such local e�cient factorizations,

for an arbitrary probabilistic model, if e�cient factorizations exist given the CI relations

speci�ed in the model.

The MAP identi�cation problem in the context of HMMs involves identifying the most

likely hidden state sequence given the observed evidence. Just as with the inference problem,

the Viterbi algorithm provides an e�cient, locally recursive method for solving this problem

with complexity Nm

2

, and again, as with the inference problem, the graphical modeling

approach provides an automatic technique for determining e�cient solutions to the MAP

problem for arbitrary models, if an e�cient solution is possible given the structure of the

model.

5 Inference and MAP Algorithms for DPINs

Inference and MAP algorithms for DPINs and UPINS are quite similar: the UPIN case

involves some subtleties not encountered in DPINs and so discussion of UPIN inference and

MAP algorithms is deferred until Section 7. The inference algorithm for DPINs (developed

by Jensen, Lauritzen and Oleson (1990) and hereafter referred to as the JLO algorithm) is a

descendant of an inference algorithm �rst described by Lauritzen and Spiegelhalter (1988).
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The JLO algorithm applies to discrete-valued variables: extensions to the JLO algorithm

for Gaussian and Gaussian-mixture distributions are discussed in Lauritzen and Wermuth

(1989). A closely related algorithm to the JLO algorithm, developed by Dawid (1992),

solves the MAP identi�cation problem with the same time-complexity as the JLO inference

algorithm.

We show that the JLO and Dawid algorithms are strict generalizations of the well-known

F-B and Viterbi algorithms for HMM(1,1), in that they can be applied to arbitrarily complex

graph structures (and thus a large family of probabilistic models beyond HMM(1,1)) and

handle missing values, partial inference, and so forth in a straightforward manner.

There are many variations on the basic JLO and Dawid algorithms. For example, Pearl

(1988) describes related versions of these algorithms in his early work . However, it can be

shown (Shachter et al. 1994) that all known exact algorithms for inference on DPINs are

equivalent at some level to the JLO and Dawid algorithms. Thus, it is su�cient to consider

the JLO and Dawid algorithms in our discussion as they subsume other graphical inference

algorithms.

The JLO and Dawid algorithms operate as a two-step process:

1. The construction step: this involve a series of sub-steps where the original directed

graph is moralized and triangulated, a junction tree is formed, and the junction tree

is initialized.

2. The propagation step: the junction tree is used in a local message-passing manner

to propagate the e�ects of observed evidence, i.e., to solve the inference and MAP

problems.

The �rst step is carried out only once for a given graph. The second (propagation) step is

carried out each time a new inference for the given graph is requested.

5.1 The Construction Step of the JLO Algorithm: From DPIN structures

to Junction Trees

We illustrate the construction step of the JLO algorithm using the simple DPIN structure,

G

D

, over discrete variables U = fX

1

; . . . ; X

6

g shown in Figure 7a. The JLO algorithm �rst

constructs the moral graph G

M

(Figure 7b). It then triangulates the moral graph G

M

to

obtain a decomposable cover G

0

(Figure 7c). The algorithm operates in a simple greedy

manner based on the fact that a graph is triangulated if and only if all of its nodes can

be eliminated, where a node can be eliminated whenever all of its neighbors are pairwise

linked. Whenever a node is eliminated, it and its neighbors de�ne a clique in the junction

tree that is eventually constructed. Thus, we can triangulate a graph and generate the

cliques for the junction tree by eliminating nodes in some order, adding links if necessary.

If no node can be eliminated without adding links, then we choose the node that can be

eliminated by adding the links that yield the clique with the smallest state-space.

After triangulation the JLO algorithm constructs a junction tree from G

0

, i.e., a clique

tree satisfying the running intersection property. The junction tree construction is based on

the following fact. De�ne the weight of a link between two cliques as the number of variables

in their intersection. Then, a tree of cliques will satisfy the running intersection property

if and only if it is a spanning tree of maximal weight. Thus, the JLO algorithm constructs

a junction tree by choosing successively a link of maximal weight unless it creates a cycle.
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(d)

Figure 7: (a) A simple DPIN structure G

D

. (b) The corresponding (undirected) moral

graph G

M

. (c) The corresponding triangulated graph G

0

. (d) The corresponding junction

tree.
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The junction tree constructed from the cliques de�ned by the DPIN structure triangulation

in Figure 7c is shown in Figure 7d.

The worst-case complexity is O(N

3

) for the triangulation heuristic and O(N

2

logN) for

the maximal spanning tree portion of the algorithm. This construction step is carried out

only once as an initial step to convert the original graph to a junction tree representation.

5.2 Initializing the Potential Functions in the Junction Tree

The next step is to take the numeric probability speci�cations as de�ned on the directed

graph G

D

(Equation 3) and convert this information into the general form for a junction

tree representation of p (Equation 2). This is achieved by noting that each variable X

i

is contained in at least one clique in the junction tree. Assign each X

i

to just one such

clique and for each clique de�ne the potential function a

C

(C) to be either the product of

p(X

i

jpa(X

i

)) over all X

i

assigned to clique C, or 1 if no variables are assigned to that clique.

De�ne the separator potentials (in Equation 2) to be 1 initially.

In the section which follows we describe the general JLO algorithm for propagating

messages through the junction tree to achieve globally consistent probability calculations.

At this point it is su�cient to know that a schedule of local message passing can be de�ned

which converges to a globally consistent marginal representation for p, i.e., the potential

on any clique or separator is the marginal for that clique or separator (the joint prob-

ability function). Thus, via local message-passing, one can go from the initial potential

representation de�ned above to a marginal representation:

p(u) =

Q

C2V

C

p(x

C

)

Q

S2V

S

p(x

S

)

(7)

At this point the junction tree is initialized. This operation in itself is not that useful, of

more interest is the ability to propagate information through the graph given some observed

data and the initialized junction tree, e.g., to calculate the posterior distributions of some

variables of interest.

From this point onwards we will implicitly assume that the junction tree has been

initialized as described above so that the potential functions are the local marginals.

5.3 Local Message Propagation in Junction Trees Using The JLO Algo-

rithm

In general p(U) can be expressed as

p(u) =

Q

C2V

C

a

C

(x

C

)

Q

S2V

S

b

S

(x

S

)

(8)

where the a

C

and b

S

are non-negative potential functions (the potential functions could

be the initial marginals described above for example). Note that this representation is a

generalization of the representations for p(u) given by Equations 1 and 2. K = (fa

C

: C 2

V

C

g; fb

S

: S 2 S

C

g) is a representation for p(U). A factorizable function p(U) can admit

many di�erent representations, i.e., many di�erent sets of clique and separator functions

which satisfy Equation 8 given a particular p(U).

As mentioned above, the JLO algorithm carries out globally consistent probability calcu-

lations via local message-passing on the junction tree, i.e., probability information is passed
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between neighboring cliques and clique and separator potentials are updated based on this

local information. A key point is that the cliques and separators are updated in a fashion

which ensures that at all times K is a representation for p(U), i.e., Equation 8 holds at

all times. Eventually the propagation converges to the marginal representation given the

initial model and the observed evidence.

The message-passing proceeds as follows. We can de�ne a ow from clique C

i

to C

j

in

the following manner where C

i

and C

j

are two cliques which are adjacent in the junction

tree. Let S

k

be the separator for these two cliques. De�ne

b

�

S

k

(x

S

k

) =

X

C

i

nS

k

a

C

i

(x

C

i

) (9)

where the summation is over the state-space of variables that are in C

i

but not in S

k

, and

a

�

C

j

(x

C

j

) = a

C

j

(x

C

j

)�

S

k

(x

S

k

) (10)

where

�

S

k

(x

S

k

) =

b

�

S

k

(x

S

k

)

b

S

k

(x

S

k

)

: (11)

�

S

k

(x

S

k

) is the update factor. Passage of a ow corresponds to updating the neighboring

clique with the probability information contained in the originating clique. This ow induces

a new representation K

�

= (fa

�

C

: C 2 V

C

g; fb

�

S

: S 2 S

C

g) for p(U).

A schedule of such ows can be de�ned such that all cliques are eventually updated

with all relevant information and the junction tree reaches an equilibrium state. The most

direct scheduling scheme is a two-phase operation where one node is denoted the root of the

junction tree. The collection phase involves passing ows along all edges towards the root-

clique (if a node is scheduled to have more than one incoming ow, the ows are absorbed

sequentially). Once collection is complete, the distribution phase involves passing ows out

from this root in the reverse direction along the same edges. There are at most two ows

along any edge in the tree in a non-redundant schedule. Note that the directionality of the

ows in the junction tree need have nothing to do with any directed edges in the original

DPIN structure.

5.4 The JLO Algorithm for Inference given Observed Evidence

The particular case of calculating the e�ect of observed evidence (inference) is handled in

the following manner. Consider that we observe evidence of the form e = fX

i

= x

�

i

; X

j

=

x

�

j

; . . .g and U

e

= fX

i

; X

j

; . . .g denotes the set of variables which have been observed. Let

U

h

= U nU

e

denote the set of hidden or unobserved variables and u

h

a value assignment

for U

h

.

Consider the calculation of p(U

h

je). De�ne an evidence function g

e

(x

i

) such that

g

e

(x

i

) =

(

1 if x

i

= x

�

i

0 otherwise.

(12)

Let

f

�

(u) = p(u)

Y

U

e

g

e

(x

i

) (13)
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Thus, we have that f

�

(u) / p(u

h

je). To obtain f

�

(u) by operations on the junction tree one

proceeds as follows. First assign each observed variable X

i

2 U

e

to one particular clique

which contains it (this is termed \entering the evidence into the clique"). Let C

E

denote

the set of all cliques into which evidence is entered in this manner. For each C 2 C

E

let

g

C

(x

C

) =

Y

fi:X

i

is entered into Cg

g

e

(x

i

) (14)

Thus,

f

�

(u) = p(u)�

Y

C2C

E

g

C

(x

C

): (15)

One can now propagate the e�ects of these modi�cations throughout the tree using the

collect and distribute schedule described in 5.3. Let x

h

C

denote a value assignment of the

hidden (unobserved) variables in clique C. When the schedule of ows is complete one gets

a new representation K

�

f

such that the local potential on each clique is f

�

(x

C

) = p(x

h

C

; e),

i.e., the joint probability of the local unobserved clique variables and the observed evidence

(Jensen et al. 1990) (similarly for the separator potential functions). If one marginalizes at

the clique over the unobserved local clique variables,

X

X

h

C

p(x

h

C

; e) = p(e); (16)

one gets the probability of the observed evidence directly. Similarly, if one normalizes the

potential function at a clique to sum to 1, one obtains the conditional probability of the

local unobserved clique variables given the evidence, p(x

h

C

je).

5.5 Complexity of the Propagation Step of the JLO Algorithm

In general, the time complexity T of propagation within a junction tree is O(

P

N

C

i=1

s(C

i

))

where N

C

is the number of cliques in the junction tree and s(C

i

) is the number of states

in the clique state-space of C

i

. Thus, for inference to be e�cient, we need to construct

junction trees with small clique sizes. Problems of �nding optimally small junction trees

(e.g., �nding the junction tree with the smallest maximal clique) are NP-hard. Nonetheless,

the heuristic algorithm for triangulation described earlier has been found to work well in

practice (Jensen et al. 1990).

6 Inference and MAP Calculations in HMM(1,1)

6.1 The F-B Algorithm for HMM(1,1) is a Special Case of the JLO Al-

gorithm

Figure 5b shows the junction tree for HMM(1,1). One can apply the JLO algorithm to the

HMM(1,1) junction tree structure to obtain a particular inference algorithm for HMM(1,1).

As mentioned earlier, the HMM(1,1) inference problem consists of being given a set of values

for the observable variables,

e = fO

1

= o

1

; O

2

= o

2

; . . . ; O

N

= o

N

g (17)

and inferring the likelihood of e given the model. As described in the previous section

this problem can be solved exactly by local propagation in any junction tree using the JLO
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inference algorithm. In Appendix 1 it is shown that both the forward and backward steps of

the F-B procedure for HMM(1,1) are exactly recreated by the more general JLO algorithm

when the HMM(1,1) is viewed as a PIN.

This equivalence is not surprising since both algorithms are solving exactly the same

problem via local recursive updating. The equivalence is useful because it provides a link

between well known HMM inference algorithms and more general PIN inference algorithms.

Furthermore, it clearly deminstrates how the PIN framework can provide a direct avenue

for analyzing and using more complex hidden Markov probability models (we will discuss

such HMMs in Section 8).

When evidence is entered into the observable states and assuming m discrete states per

hidden variable, the computational complexity of solving the inference problem via the JLO

algorithm is O(Nm

2

) (the same complexity as the standard F-B procedure).

Note that the obvious structural equivalence between PIN structures and HMM(1,1)

has been noted before by Buntine (1994), Frasconi and Bengio (1994), and Lucke (1995)

among others: however, the demonstration of equivalence of speci�c inference algorithms is

new as far as we are aware.

6.2 Equivalence of Dawid's Propagation Algorithm for Identifying MAP

Assignments and the Viterbi Algorithm

Consider that one wishes to calculate

^

f (u

h

; e) = max

x

1

;...;x

K

p(x

1

; . . . ; x

K

; e) and one also

wishes to identify a set of values of the unobserved variables which achieve this maximum,

where K is the number of unobserved (hidden) variables. This calculation can be achieved

using a local propagation algorithm on the junction tree if one makes two modi�cations

to the standard JLO inference algorithm described above. This algorithm is due to Dawid

(1992) and as pointed out earlier this is the most general algorithm from a set of related

methods.

Firstly, during a ow, the marginalization of the separator is replaced by:

^

b

S

(x

S

) = max

CnS

a

C

(x

C

) (18)

where C is the originating clique for the ow. The de�nition for �

S

(x

S

) is also changed in

the obvious manner.

Secondly, marginalization within a clique is replaced by maximization:

^

f

C

= max

unx

C

p(u): (19)

Given these two changes it can be shown that if the same propagation operations are

carried out as described earlier, the resulting representation

^

K

f

at equilibrium is such that

the potential function on each clique C is

^

f(x

C

) = max

u

h

nx

C

p(x

h

C

; e; fu

h

n x

C

g) (20)

where x

h

C

denotes a value assignment of the hidden (unobserved) variables in clique C.

Thus, once the

^

K

f

representation is obtained, one can locally identify the values of X

h

C

which maximize the full joint probability as

x̂

h

C

= arg

x

h

C

^

f(x

C

): (21)
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In the probabilistic expert systems literature this procedure is known as generating the

\most probable explanation" (MPE) given the observed evidence (Pearl 1988).

The HMM(1,1) MAP problem consists of being given a set of values for the observable

variables, e = fO

1

= o

1

; O

2

= o

2

; . . . ; O

N

= o

N

g and inferring

max

h

1

;...;h

N

p(h

1

; . . . ; h

N

; e): (22)

or the set of arguments which acheive this maximum. Since Dawid's algorithm is applicable

to any junction tree it can directly be applied to the HMM(1,1) junction tree in Figure 5b.

In Appendix 2 it is shown that Dawid's algorithm, when applied to HMM(1,1), is exactly

equivalent to the standard Viterbi algorithm. Once again the equivalence is not surprising:

Dawid's method and the Viterbi algorithm are both direct applications of dynamic pro-

gramming to the MAP problem. However, once again, the important point is that Dawid's

algorithm is speci�ed for the general case of arbitrary PIN structures and can thus be di-

rectly applied to more complex HMMs than HMM(1,1) (such as those discussed later in

Section 8).

7 Inference and MAP Algorithms for UPINs

In Section 5 we described the JLO algorithm for local inference given a DPIN: for UPINs

the procedure is very similar except for two changes to the overall algorithm. The �rst is

the trivial observation that the moralization step is not necessary. The second di�erence,

initialization of the junction tree is less trivial. In Section 5.2 we described how to go

from a speci�cation of conditional probabilities in a directed graph to an initial potential

function representation on the cliques in the junction tree. To utilize undirected links in the

model speci�cation process requires new machinery to perform the initialization step. In

particular we wish to compile the model into the standard form of a product of potentials

on the cliques of a triangulated graph (cf. Equation 1):

P (u) =

Y

C2V

C

a

C

(x

C

):

Once this initialization step has been achieved, the JLO propagation procedure proceeds as

before.

Consider the chordless cycle shown in Figure 4b. Suppose that we parameterize the

probability distribution on this graph by specifying pairwise marginals on the four pairs of

neighboring nodes. We wish to convert such a local speci�cation into a globally consistent

joint probability distribution, i.e., a marginal representation. An algorithm known as It-

erative Proportional Fitting (IPF) is available to perform this conversion. Classically, IPF

proceeds as follows (Bishop, Fienberg, & Holland, 1973). Suppose for simplicity that all of

the random variables are discrete (a Gaussian version of IPF is also available (Whittaker

1990)) such that the joint distribution can be represented as a table. The table is initialized

with equal values in all of the cells. For each marginal in turn, the table is then rescaled by

multiplying every cell by the ratio of the desired marginal to the corresponding marginal

in the current table. The algorithm visits each marginal in turn, iterating over the set of

marginals. If the set of marginals are consistent with a single joint distribution, the algo-

rithm is guaranteed to converge to the joint distribution. Once the joint is available, the

potentials in Equation 1 can be obtained (in principle) by marginalization.
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Although IPF solves the initialization problem in principle, it is ine�cient. Ji�rousek and

P�reu�cil (1995) developed an e�cient version of IPF that both avoids the need for storing

the joint distribution as a table and avoids the need for explicit marginalization of the

joint to obtain the clique potentials. Ji�rousek's version of IPF represents the evolving joint

distribution directly in terms of junction tree potentials. The algorithm proceeds as follows.

Let I be a set of subsets of V . For each I 2 I, let q(x

I

) denote the desired marginal on the

subset I . Let the joint distribution be represented as a product over junction tree potentials

(Equation 1), where each a

C

is initialized to an arbitrary constant. Visit each I 2 I in turn,

updating the corresponding clique potential a

C

(i.e, that potential a

C

for which I � C) as

follows:

a

�

C

(x

C

) = a

C

(x

C

)

q(x

I

)

p(x

I

)

:

The marginal p(x

I

) is obtained via the JLO algorithm, using the current set of clique

potentials. Intelligent choices can be made for the order in which to visit the marginals to

minimize the amount of propagation needed to compute p(x

I

). This algorithm is simply

an e�cient way of organizing the IPF calculations and inherits the latter's guarantees of

convergence.

Note that the Ji�rousek and P�reu�cil algorithm requires a triangulation step in order to

form the junction tree used in the calculation of p(x

I

). In the worst case, triangulation can

yield a highly-connected graph, in which case the Jirousek and Preucil algorithm reduces to

classical IPF. For sparse graphs, however, when the maximum clique is much smaller than

the entire graph, the Jirousek and Preucil algorithm should be substantially more e�cient

than classical IPF. Moreover, the triangulation algorithm itself need only be run once as a

pre-processing step (as is the case for the JLO algorithm).

8 More Complex HMMs for Speech Modeling

Although hidden Markov models have provided an exceedingly useful framework for the

modeling of speech signals, it is also true that the simple HMM(1,1) model underlying the

standard framework has strong limitations as a model of speech. Real speech is generated

by a set of coupled dynamical systems (lips, tongue, glottis, lungs, air columns, etc.), each

of which obeys particular dynamical laws. This coupled physical process is not well modeled

by the unstructured state transition matrix of HMM(1,1). Moreover, the �rst-order Markov

properties of HMM(1,1) are not well suited to modeling the ubiquitous coarticulation e�ects

that occur in speech, particularly coarticulatory e�ects that extend across several phonemes

(cf. Kent & Mini�e, 1977). A variety of techniques have been developed to surmount these

basic weaknesses of the HMM(1,1) model, including mixture modeling of emission probabil-

ities, triphone modeling, and discriminative training. All of these methods, however, leave

intact the basic probabilistic structure of HMM(1,1) as expressed by its PIN structure.

In this section we describe several extensions of HMM(1,1) that assume additional prob-

abilistic structure beyond that assumed by HMM(1,1). PINs provide a key tool in the study

of these more complex models. The role of PINs is twofold: �rst, they provide a concise de-

scription of the probabilistic dependencies assumed by a particular model, and second, they

provide a general algorithm for computing likelihoods. This second property is particularly

important|the existence of the JLO algorithm frees us from having to derive particular

recursive algorithms on a case-by-case basis.
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Figure 8: (a) the UPIN structure for the HMM(1,2) model with � = 2, (b) a triangulation

of this UPIN structure.
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The �rst model that we consider can be viewed as a coupling of two HMM(1,1) chains

(Saul & Jordan, 1995). Such a model can be useful in general sensor fusion problems, for

example in the fusion of an audio signal with a video signal in lipreading. Because di�erent

sensory signals generally have di�erent bandwidths, it may be useful to couple separate

Markov models that are developed speci�cally for each of the individual signals. The al-

ternative is to force the problem into an HMM(1,1) framework by either oversampling the

slower signal, which requires additional parameters and leads to a high-variance estimator,

or downsampling the faster signal, which generally oversmoothes the data and yields a bi-

ased estimator. Consider the HMM(1,2) structure shown in Figure 8a. This model involves

two HMM(1,1) backbones that are coupled together via undirected links between the state

variables. Let H

(1)

i

and O

(1)

i

denote the i

th

state and i

th

output of the \fast" chain, re-

spectively, and let H

(2)

i

and O

(2)

i

denote the i

th

state and i

th

output of the \slow" chain.

Suppose that the fast chain is sampled � times as often as the slow chain. Then H

(1)

i

0

is

connected to H

(2)

i

for i

0

equal to �(i� 1)+ 1. Given this value for i

0

, the Markov model for

the coupled chain implies the following conditional independencies for the state variables:

fH

(1)

i

0

; H

(2)

i

g ? fH

(1)

1

; O

(1)

1

; H

(2)

1

; O

(2)

1

; . . . ; H

(1)

i

0

�2

; O

(1)

i

0

�2

; H

(2)

i�2

; O

(2)

i�2

; O

(1)

i

0

�1

; O

(2)

i�1

gjfH

(1)

i

0

�1

; H

(2)

i�1

g;

(23)

as well as the following conditional independencies for the output variables:

fO

(1)

i

0

; O

(2)

i

g ? fH

(1)

1

; O

(1)

1

; H

(2)

1

; O

(2)

1

; . . . ; H

(1)

i

0

�1

; O

(1)

i

0

�1

; H

(2)

i�1

; O

(2)

i�1

gjfH

(1)

i

0

; H

(2)

i

g: (24)

Additional conditional independencies can be read o� the UPIN structure (see Figure 8a).

As is readily seen in Figure 8a, the HMM(1,2) graph is not triangulated, thus the

HMM(1,2) probability model is not decomposable. However, the graph can be readily

triangulated to form a decomposable cover for the HMM(1,2) probability model (see Sec-

tion 3.1.2). The JLO algorithm provides an e�cient algorithm for calculating likelihoods in

this graph. This can be seen in Figure 8b, where we show a triangulation of the HMM(1,2)

graph. The triangulation adds O(N

h

) links to the graph (where N

h

is the number of hidden

nodes in the graph) and creates a junction tree in which each clique is a cluster of three

state variables from the underlying UPIN structure. Assuming m values for each state vari-

able in each chain, we obtain an algorithm whose time complexity is O(N

h

m

3

). This can

be compared to the naive approach of transforming the HMM(1,2) model to a Cartesian

product HMM(1,1) model, which not only has the disadvantage of requiring subsampling

or oversampling, but also has a time complexity of O(N

h

m

4

).

Directed graph semantics can also play an important role in constructing interesting vari-

ations on the hidden Markov model theme. Consider Figure 9a, which shows an HMM(1,2)

model in which a single output stream is coupled to a pair of underlying state sequences. In

a speech modeling application such a structure might be used to capture the fact that a given

acoustic pattern can have multiple underlying articulatory causes. For example, equivalent

shifts in formant frequencies can be caused by lip-rounding or tongue-raising; such phenom-

ena are generically refered to as \trading relations" in the speech psychophysics literature

(Lindblom 1990; Perkell et al. 1993). Once a particular acoustic pattern is observed, the

causes become dependent; thus for example, evidence that the lips are rounded would act

to discount inferences that the tongue has been raised. These inferences propagate forward

and backward in time and couple the chains. Formally, these induced dependencies are

accounted for by the links added between the state sequences during the moralization of
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Figure 9: (a) the DPIN structure for HMM(1,2) with a single observable sequence coupled

to a pair of underlying state sequences, (b) the moralization of this DPIN structure.
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Figure 10: The UPIN structure for HMM(3,1).

the graph (see Figure 9b). This �gure shows that the underlying calculations for this model

are closely related to those of the earlier HMM(1,2), but the model speci�cation is very

di�erent in the two cases.

Saul and Jordan (1996) have proposed a second extension of the HMM(1,1) model which

is motivated by the desire to provide a more e�ective model of coarticulation (see also

Stolorz, 1994). In this model, shown in Figure 10, coarticulatory inuences are modeled

via additional links between output variables and states along an HMM(1,1) backbone.

One approach to performing calculations in this model is to treat it as a K

th

-order Markov

chain, and transform it into an HMM(1,1) model by de�ning higher-order state variables. A

graphical modeling approach is more exible|it is possible for example to introduce links

between states and outputsK time steps apart without introducing links for the intervening

time intervals. More generally, the graphical modeling approach to the HMM(K,1) model

allows the speci�cation of di�erent interaction matrices at di�erent time scales; this is

awkward in the K

th

-order Markov chain formalism.

The HMM(3,1) graph is triangulated as is, and thus, the time complexity of the JLO

algorithm is therefore O(N

h

m

3

). In general a HMM(K,1) graph creates cliques of size

O(m

K

) and the JLO algorithm runs in time O(N

h

m

K

).

As these examples suggest, the graphical modeling framework provides a useful frame-

work for exploring extensions of hidden Markov models. The examples also make clear,

however, that the graphical algorithms are no panacea. The m

K

complexity of HMM(K,1)

will be prohibitive for large K. Also, the generalization of HMM(1,2) to HMM(1,K) (cou-

plings of K chains) is intractable. Recent research has therefore focused on approximate

algorithms for inference in such structures|see Saul and Jordan (1996) for HMM(K,1) and

Ghahramani and Jordan (1996) and Williams and Hinton (1990) for HMM(1,K). These

authors have developed an approximation methodology based on mean-�eld theory from

statistical physics. While discussion of mean-�eld algorithms is beyond the scope of this

paper, it is worth noting that the graphical modeling framework plays a useful role in the

development of these approximations. Essentially the mean-�eld approach involves creating

a simpli�ed graph for which tractable algorithms are available, and minimizing a proba-

bilistic distance between the tractable graph and the intractable graph. The JLO algorithm

is called as a subroutine on the tractable graph during the minimization process.
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9 Learning and PINs

Until now, we have assumed that the parameters and structure of a PIN are known with

certainty. In this section, we drop this assumption and discuss methods for learning about

the parameters and structure of a PIN.

The basic idea behind the techniques that we discuss is that there is a true joint prob-

ability distribution described by some PIN structure and parameters, but we are uncertain

about this structure and its parameters. We are unable to observe the true joint distribution

directly, but we are able to observe a set of patterns u

1

; . . . ;u

M

that is a random sample

from this true distribution. These patterns are independent and identically distributed

(i.i.d.) according to the true distribution (note that in a typical HMM learning problem,

each of the u

i

consist of a sequence of observed data). We use these data to learn about the

structure and parameters that encode the true distribution.

9.1 Parameter Estimation for PINs

First, let us consider the situation where we know the PIN structure S of the true distri-

bution with certainty, but we are uncertain about the parameters of S.

In keeping with the rest of the paper, let us assume that all variables in U are discrete.

Furthermore, for purposes of illustration, let us assume that S is an ADG. Let x

k

i

and

pa(X

i

)

j

denote the kth value of variable X

i

and jth con�guration of variables pa(X

i

) in

S, respectively (j = 1; . . . ; q

i

, k = 1; . . . ; r

i

). As we have just discussed, we assume that

each conditional probability p(x

k

i

jpa(X

i

)

j

) is possibly uncertain, and for convenience we

represent this probability as a parameter �

ijk

. We use �

ij

to denote the vector of parameters

(�

ij1

; . . . ; �

ijr

i

) and �

s

to denote the vector of all parameters for S. Note that

P

r

i

k=1

�

ijk

= 1

for every i and j.

One method for learning about the parameters �

s

is the Bayesian approach. We treat

the parameters �

s

as random variables, assign these parameters a prior distribution p(�

s

jS),

and update this prior distribution with data D = (u

1

; . . . ;u

M

) according to Bayes' rule:

p(�

s

jD;S) = c � p(�

s

jS) p(Dj�

s

; S) (25)

where c is a normalization constant that depends on D. Because the patterns in D are a

random sample, Equation 25 simpli�es to

p(�

s

jD;S) = c � p(�

s

jS)

M

Y

l=1

p(u

l

j�

s

; S) (26)

Given some prediction of interest that depends on �

s

and S|say f(�

s

; S)|we can use the

posterior distribution of �

s

to compute an expected prediction:

E(f(�

s

; S)jD;S) =

Z

f(�

s

; S) p(�

s

jD;S) d�

s

(27)

Associated with our assumption that the data D are a random sample from structure

S with uncertain parameters �

s

is a set of conditional independence assertions. Not sur-

prisingly, some of these assumptions can be represented as a (directed) PIN that includes

both the possible observations and the parameters as variables. Figure 11a shows these

assumptions for the case where U = fX

1

; X

2

g and S is the structure with a directed edge

from X

1

to X

2

.
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Figure 11: A Bayesian-network structure for a two-binary-variable domain fX

1

; X

2

g show-

ing (a) conditional independencies associated with the random-sample assumption, and (b)

the added assumption of parameter independence. In both �gures, it is assumed that the

network structure X

1

! X

2

is generating the database.

Under certain additional assumptions, described for example in Spiegelhalter and Lau-

ritzen (1990), the evaluation of Equation 26 is straightforward. In particular, if each pattern

u

l

is complete (i.e., every variable is observed), we have

p(u

l

j�

s

; S) =

N

Y

i=1

q

i

Y

j=1

r

i

Y

k=1

�

�

ijkl

ijk

(28)

where �

ijkl

is equal to one if X

i

= x

k

i

and pa(X

i

) = pa(X

i

)

j

in pattern C

l

and zero otherwise.

Combining Equations 26 and 28, we obtain

p(�

s

jD;S) = c � p(�

s

jS)

N

Y

i=1

q

i

Y

j=1

r

i

Y

k=1

�

N

ijk

ijk

(29)

where N

ijk

is the number of patterns in which X

i

= x

k

i

and pa(X

i

) = pa(X

i

)

j

. The N

ijk

are

the su�cient statistics for the random sample D. If we assume that the parameter vectors

�

ij

; i = 1; . . . ; n; j = 1 . . . ; q

i

are mutually independent, an assumption we call parameter

independence, then we get the additional simpli�cation

p(�

s

jD;S) = c

N

Y

i=1

q

i

Y

j=1

p(�

ij

jS)

r

i

Y

k=1

�

N

ijk

ijk

(30)

The assumption of parameter independence for our two-variable example is illustrated in

Figure 11b. Thus, given complete data and parameter independence, each parameter vector

�

ij

can be updated independently. The update is particularly simple if each parameter

vector has a conjugate distribution. For a discrete variable with discrete parents, the natural

conjugate distribution is the Dirichlet:

p(�

ij

jS) /

r

i

Y

k=1

�

�

ijk

�1

ijk
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in which case Equation 30 becomes

p(�

s

jD;S) = c

N

Y

i=1

q

i

Y

j=1

r

i

Y

k=1

�

N

ijk

+�

ijk

�1

ijk

(31)

Other conjugate distributions include the normal-Wishart distribution for the parameters of

Gaussian codebooks and the Dirichlet distribution for the mixing coe�cients of Gaussian-

mixture codebooks (DeGroot 1970; Buntine 1994; Heckerman and Geiger 1995). Heckerman

and Geiger (1995) describe a simple method for assessing these priors. These priors have

also been used for learning parameters in standard HMMs (e.g., Gauvain and Lee, 1994).

Parameter independence is usually not assumed in general for HMM structures. For

example, in the HMM(1,1) model, a standard assumption is that p(H

i

jH

i�1

) = p(H

j

jH

j�1

)

and p(O

i

jH

i

) = p(O

j

jH

j

) for all i and j. Fortunately, parameter equalities such as these

are easily handled in the framework above (see Thiesson, 1995, for a detailed discussion).

In addition the assumption that patterns are complete is clearly inappropriate for HMM

structures in general, where some of the variables are hidden from observation. When data

are missing, the exact evaluation of the posterior p(�

s

jD;S) is typically intractable, so

we turn to approximations. Accurate but slow approximations are based on Monte-Carlo

sampling (e.g., Neal, 1993). An approximation that is less accurate but more e�cient is one

based on the observation that, under certain conditions, the quantity p(�

s

jS) � p(Dj�

s

; S)

converges to a multivariate Gaussian distribution as the sample size increases (see, e.g.,

Kass et al., 1988, and MacKay, 1992ab).

Less accurate but more e�cient approximations are based on the observation that the

Gaussian distribution converges to a delta function centered at the maximum-a-posteriori

(MAP) and eventually the maximum-likelihood (ML) value of �

s

. For the standard HMM(1,1)

model discussed in this paper, where either discrete, Gaussian, or Gaussian-mixture code-

books are used, a ML or MAP estimate is a well-known e�cient approximation (Poritz

1988; Rabiner 1989).

MAP and ML estimates can be found using traditional techniques such as gradient

descent and expectation-maximization (EM) (Dempster et al., 1977). The EM algorithm

can be applied e�ciently whenever the likelihood function has su�cient statistics that are of

�xed dimension for any data set. The EM algorithm �nds a local maximum by initializing

the parameters �

s

(e.g., at random or via some clustering algorithm) and repeating E

and M steps. In the E step, we compute the expected su�cient statistic for each of the

parameters, given D and the current values for �

s

. In particular, if all variables are discrete,

and parameter independence is assumed to hold, and all priors are Dirichlet, we obtain

E(N

ijk

jD; �

s

; S) =

M

X

l=1

p(x

k

i

; pa(X

i

)

j

ju

l

; �

s

; S)

An important feature of the EM algorithm applied to PINs under these assumptions is that

each term in the sum can be computed using the JLO algorithm. The JLO algorithm may

also be used when some parameters are equal and when the likelihoods of some variables

are Gaussian or Gaussian-mixture distributions (Lauritzen and Wermuth, 1989). In the M

step, we use the expected su�cient statistics as if they were actual su�cient statistics, and

set the new values of �

s

to be the MAP or ML values given these statistics. Again, if all

variables are discrete, and parameter independence is assumed to hold, and all priors are
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Dirichlet, the ML is given by

�

ijk

=

E(N

ijk

jD; �

s

; S)

P

r

i

k=1

E(N

ijk

jD; �

s

; S)

and the MAP is given by

�

ijk

=

E(N

ijk

jD; �

s

; S) + �

ijk

� 1

P

r

i

k=1

(E(N

ijk

jD; �

s

; S) + �

ijk

� 1)

9.2 Model Selection and Averaging for PINs

Now, let us assume that we are not only uncertain about the parameters of a PIN, but we

are also uncertain about the true structure of a PIN. For example, we may know that the

true structure is an HMM(K; J) structure, but we may be uncertain about the values of K

and J .

One solution to this problem is Bayesian model averaging. In this approach, we view each

possible PIN structure (without its parameters) as a model. We assign prior probabilities

p(S) to di�erent models, and compute their posterior probabilities given data:

p(SjD) / p(S) p(DjS) = p(S)

Z

p(Dj�; S) p(�jS) d� (32)

As indicated in Equation 32, we compute p(DjS) by averaging the likelihood of the data

over the parameters of S. In addition to computing the posterior probabilities of models, we

estimate the parameters of the each model, either by computing the distribution p(�jD;S)

or using a Gaussian, MAP, or ML approximation for this distribution. We then make a

prediction of interest based on each model separately, as in Equation 27, and compute the

weighted average of these predictions using the posterior probabilities of models as weights.

One complication with this approach is that when data are missing|for example, when

some variables are hidden|the exact computation of the integral in Equation 32 is usually

intractable. As discussed in the previous section, Monte Carlo and Gaussian approximations

may be used. One simple form of a Gaussian approximation is the Bayesian Information

Criterion (BIC) described by Schwarz (1978):

log p(DjS)� log p(Dj

^

�

s

; S)�

d

2

logM

where

^

�

s

is the ML estimate, M is the number of patterns in D, and d is the dimension of

S|typically, the number of parameters of S. The �rst term of this \score" for S rewards

how well the data �t S, whereas the second term punishes model complexity. Note that

this score does not depend on the parameter prior, and thus can be applied easily.

2

For

examples of applications of BIC in the context of PINs and other statistical models, see

Raftery (1995).

The BIC score is the additive inverse of Rissanen's (1987) minimum description length

(MDL). Other scores, which can be viewed as approximations to the marginal likelihood, are

hypothesis testing (Raftery 1995) and cross validation (Fung and Crawford 1990). Buntine

2

One caveat: The BIC score is derived under the assumption that the parameter prior is positive through-

out its domain.
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(in press) provides a comprehensive review of scores for model selection and model averaging

in the context of PINs.

Another complication with Bayesian model averaging is that there may be so many

possible models that averaging becomes intractable. In this case, we select one or a handful

of structures with high relative posterior probabilities, and make our predictions with this

limited set of models. This approach is called model selection. The trick here is �nding a

model or models with high posterior probabilities. Detailed discussions of search methods for

model selection among PINs are given by (e.g.) Madigan and Raftery (1994), Heckerman

et al. (1995), and Spirtes and Meek (1995). In the case where the true model is some

HMM(K; J) structure, we may have additional prior knowledge that strongly constrains

the possible values of K and J . Here, exhaustive model search is likely to be practical.

10 Summary

Probabilistic independence networks provide a useful framework for both the analysis and

application of multivariate probability models when there is considerable structure in the

model in the form of conditional independence. The graphical modelling approach both

clari�es the independence semantics of the model and yields e�cient computational algo-

rithms for probabilistic inference. This paper has shown that it is useful to cast HMM

structures in a graphical model framework. In particular, the well known F-B and Viterbi

algorithms were shown to be special cases of more general algorithms from the graphical

modelling literature. Furthermore, more complex HMM structures, beyond the traditional

�rst-order model, can be analyzed pro�tably and directly using generally-applicable graph-

ical modeling techniques.
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Appendix 1: The Forward-Backward Algorithm for HMM(1,1) is a Special

Case of the JLO Algorithm

Consider the junction tree for HMM(1,1) as shown in Figure 5b. Let the �nal clique in the

chain containing (H

N�1

; H

N

) be the root clique. Thus, a non-redundant schedule consists of

�rst recursively passing ows from each (O

i

; H

i

) and (H

i�2

; H

i�1

) to each (H

i�1

; H

i

) in the

appropriate sequence (the \collect" phase), and then distributing ows out in the reverse

direction from the root clique. If we are only interested in calculating the likelihood of e

given the model, then the distribute phase is not necessary since we can simply marginalize

over the local variables in the root clique to obtain p(e).

A comment on notation: subscripts on potential functions and update factors indicate

which variables have been used in deriving that potential or update factor, e.g., f

O

1

indi-

cates that this potential has been updated based on information about O

1

but not using

information about any other variables.
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Figure 12: Local message passing in the HMM(1,1) junction tree during the collect phase

of a \left to right" schedule. Ovals indicate cliques, boxes indicate separators, and arrows

indicate ows.

Assume that the junction tree has been initialized so that the potential function for each

clique and separator is the local marginal. Given the observed evidence e, each individual

piece of evidence O = o

�

i

is entered into its clique (O

i

, H

i

) such that each clique marginal

becomes f

�

O

i

(h

i

; o

i

) = p(h

i

; o

�

i

) after entering the evidence (as in Equation 14).

Consider the portion of the junction tree in Figure 12, and in particular the ow between

(O

i

; H

i

) and (H

i�1

; H

i

). By de�nition the potential on the separator H

i

is updated to

f

�

O

i

(h

i

) =

X

o

i

f

�

(h

i

; o

i

) = p(h

i

; o

�

i

) (33)

The update factor from this separator owing into clique (H

i�1

; H

i

) is then

�

O

i

(h

i

) =

p(h

i

; o

�

i

)

p(h

i

)

= p(o

�

i

jh

i

): (34)

This update factor is \absorbed" into (H

i�1

; H

i

) as follows:

f

�

O

i

(h

i�1

; h

i

) = p(h

i�1

; h

i

)�

O

i

(h

i

) = p(h

i�1

; h

i

)p(o

�

i

jh

i

) (35)

Now consider the ow from clique (H

i�2

; H

i�1

) to clique (H

i�1

; H

i

). Let �

i;j

= fO

i

; . . . ; O

j

g

denote a set of consecutive observable variables and �

�

i;j

= fo

�

i

; . . . ; o

�

j

g denote a set of ob-

served values for these variables, 1 � i < j � N . Assume that the potential on the separator

H

i�1

has been updated to

f

�

�

1;i�1

(h

i�1

) = p

�

(h

i�1

; �

�

1;i�1

) (36)

via earlier ows in the schedule. Thus, the update factor on separator H

i�1

becomes

�

�

1;i�1

(h

i�1

) =

p

�

(h

i�1

; �

�

1;i�1

)

p(h

i�1

)

(37)
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and this gets absorbed into clique (H

i�1

; H

i

) to produce

f

�

�

1;i

(h

i�1

; h

i

) = f

�

O

i

(h

i�1

; h

i

)�

�

1;i�1

(h

i�1

)

= p(h

i�1

; h

i

)p(o

�

i

jh

i

)

p

�

(h

i�1

; �

�

1;i�1

)

p(h

i�1

)

= p(o

�

i

jh

i

)p(h

i

jh

i�1

)p

�

(h

i�1

; �

�

1;i�1

): (38)

Finally, we can calculate the new potential on the separator for the ow from clique

(H

i�1

; H

i

) to (H

i

; H

i+1

),

f

�

�

1;i

(h

i

) =

X

h

i�1

f

�

�

1;i

(h

i�1

; h

i

) (39)

= p(o

�

i

jh

i

)

X

h

i�1

p(h

i

jh

i�1

)p

�

(h

i�1

; �

�

1;i�1

) (40)

= p(o

�

i

jh

i

)

X

h

i�1

p(h

i

jh

i�1

)f

�

�

1;i�1

(h

i�1

) (41)

Proceeding recursively in this manner one �nally obtains at the root clique

f

�

�

1;N

(h

N�1

; h

N

) = p(h

N�1

; h

N

; �

�

1;N

) (42)

from which one can get the likelihood of the evidence,

p(e) = p(�

�

1;N

) =

X

h

N�1

;h

N

f

�

�

1;N

(h

N�1

; h

N

): (43)

We note that Equation 41 directly corresponds to the recursive equation (Equation 20

in Rabiner (1989)) for the � variables used in the forward phase of the F-B algorithm,

the standard HMM(1,1) inference algorithm. In particular, using a \left-to-right" schedule

the updated potential functions on the separators between the hidden cliques, the f

�

�

1;i

(h

i

)

functions, are exactly the � variables. Thus, when applied to HMM(1,1), the JLO algorithm

produces exactly the same local recursive calculations as the forward phase of the F-B

algorithm.

One can also show an equivalence between the backward phase of the F-B algorithm and

the JLO inference algorithm. Let the \left-most" clique in the chain, (H

1

; H

2

), be the root

clique and de�ne a schedule such that the ows go from right to left. Figure 13 shows a local

portion of the clique tree and the associated ows. Consider that the potential on clique

(H

i

; H

i+1

) has been updated already by earlier ows from the right. Thus, by de�nition,

f

�

�

i+1;N

(h

i

; h

i+1

) = p(h

i

; h

i+1

; �

�

i+1;N

): (44)

The potential on the separator between (H

i

; H

i+1

) and (H

i�1

; H

i

) is calculated as:

f

�

�

i+1;N

(h

i

) =

X

h

i+1

p(h

i

; h

i+1

; �

�

i+1;N

) (45)

= p(h

i

)

X

h

i+1

p(h

i+1

jh

i

)p(o
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i+1

jh

i+1

)p(�

�

i+2;N

jh

i+1

) (46)

(by virtue of the various conditional independence relations in HMM(1,1))

= p(h

i

)

X

h

i+1

p(h

i+1

jh

i

)p(o

�

i+1

jh

i+1

)

p(�
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i+2;N

; h

i+1

)

p(h

i+1

)

(47)

= p(h
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)
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)

f
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(h
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)

p(h
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(48)

31



Hi-1 Hi Hi Hi Hi+1 Hi+1
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Oi+1Hi+1

Figure 13: Local message passing in the HMM(1,1) junction tree during the collect phase

of a \right to left" schedule. Ovals indicate cliques, boxes indicate separators, and arrows

indicate ows.

De�ning the update factor on this separator yields

�

�

�

i+1;N

(h

i

) =

f

�

�

i+2;N

(h

i

)

p(h

i

)

(49)

=

X

h

i+1

p(h

i

jh

i+1

)p(o
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i+1

jh

i+1

)

f

�

�

i+2;N

(h

i+1

)

p(h

i+1
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(50)

=

X

h

i+1

p(h

i

jh

i+1

)p(o

�

i+1

jh

i+1

)�

�

�

i+2;N

(h

i+1

): (51)

This set of recursive equations in � corresponds exactly to the recursive equation (Equation

25 in Rabiner (1989)) for the � variables in the backward phase of the F-B algorithm. In

fact, the update factors � on the separators are exactly the � variables. Thus, we have

shown that the JLO inference algorithm recreates the F-B algorithm for the special case of

the HMM(1,1) probability model.

Appendix 2: The Viterbi Algorithm for HMM(1,1) is a Special Case of

Dawid's Algorithm

As with the inference problem, let the �nal clique in the chain containing (H

N�1

; H

N

) be

the root clique and use the same schedule, i.e., �rst a \left-to-right" collection phase into the

root clique, followed by a \right-to-left" distribution phase out from the root clique. Again

it is assumed that the junction tree has been initialized so that the potential functions are

the local marginals, and the observable evidence e has been entered into the cliques in the

same manner as described for the inference algorithm.

We refer again to Figure 12: the sequence of ow and absorption operations is identical

to that of the inference algorithm with the exception that marginalization operations are

replaced by maximization. Thus, the potential on the separator between (O

i

; H

i

) and
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(H

i�1

; H

i

) is initially updated to

^

f

O

i

(h

i

) = max

o

i

p(h

i

; o

i

) = p(h

i

; o

�

i

): (52)

The update factor for this separator is

�

O

i

(h

i

) =

p(h

i

; o

�

i

)

p(h

i

)

= p(o

�

i

jh

i

); (53)

and after absorption into the clique (H

i�1

; H

i

) one gets

^

f

O

i

(h

i�1

; h

i

) = p(h

i�1

; h

i

)p(o

�

i

jh

i

): (54)

Now consider the ow from clique (H

i�2

; H

i�1

) to (H

i�1

; H

i

). Let H

i;j

= fH

i

; . . . ; H

j

g

denote a set of consecutive observable variables and h

�

i;j

= fh

�

i

; . . . ; h

�

j

g, denote the observed

values for these variables, 1 � i < j � N . Assume that the potential on separator H

i�1

has

been updated to

^

f

�

1;i�1

(h

i�1

) = max

h

1;i�2

p(h

i�1

; h

1;i�2

; �

�

1;i�1

) (55)

via earlier ows in the schedule. Thus, the update factor for separator H

i�1

becomes

�
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1;i�1

(h

i�1

) =
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1;i�2

p(h
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)

p(h
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(56)

and this gets absorbed into clique (H

i�1

; H

i

) to produce
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) (57)
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)
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)

p(h
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)

: (58)

We can now obtain the new potential on the separator for the ow from clique (H

i�1

; H

i

)

to (H

i

; H

i+1

),

^
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1;i
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^
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) (59)
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)g (60)
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)g (61)

= max

h

1;i�1

p(h

i

; h

1;i�1

; �

�

1;i

) (62)

which is the result one expects for the updated potential at this clique. Thus, we can express

the separator potential

^

f

�

1;i

(h

i

) recursively (via Equation 61) as

^

f

�

1;i

(h

i

) = p(o

�

i

jh

i

)max

h

i�1

fp(h

i

jh

i�1

)

^

f

�

1;i�1

(h

i�1

)g: (63)

This is the same recursive equation as used in the � variables in the Viterbi algorithm

(Equation 33a in Rabiner (1990)): the separator potentials in Dawid's algorithm using a

left-to-right schedule are exactly the same as the �

0

s used in the Viterbi method for solving

the MAP problem in HMM(1,1).
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Proceeding recursively in this manner one �nally obtains at the root clique

^

f

�

1;N

(h

N�1

; h

N

) = max

h

1;N�2

p(h

N�1

; h

N

; h

N�2

; �

�

1;N

) (64)

from which one can get the likelihood of the evidence given the most likely state of the

hidden variables:

^

f(e) = max

h

N�1

;h

N

^

f

�

1;N

(h

N�1

; h

N

) (65)

= max

h

1;N

p(h

1;N

; �

�

1;N

) (66)

Identi�cation of the values of the hidden variables which maximize the evidence like-

lihood can be carried out in the standard manner as in the Viterbi method, namely by

keeping a pointer at each clique along the ow in the forward direction back to the previous

clique and then backtracking along this list of pointers from the root clique after the collec-

tion phase is complete. An alternative approach is to use the distribute phase of the Dawid

algorithm: this has the same e�ect, namely, once the distribution ows are completed, each

local clique can calculate both the maximum value of the evidence likelihood given the

hidden variables and the values of the hidden variables in this maximum which are local to

that particular clique.
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