
Causal Independence for Probability Assessment and Inference

Using Bayesian Networks

David Heckerman and John S. Breese

Copyright c©1993 IEEE. Reprinted from D. Heckerman, J. Breese. Causal Independence for Prob-

ability Assessment and Inference Using Bayesian Networks. IEEE Transactions on Systems, Man,

and Cybernetics, 26:826-831, 1996.

This material is posted here with permission of the IEEE. Internal or personal use of this material

is permitted. However, permission to reprint/republish this material for advertising or promotional

purposes or for creating new collective works for resale or redistribution must be obtained from the

IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

1



Causal Independence for Probability Assessment and Inference

Using Bayesian Networks

David Heckerman and John S. Breese

Microsoft Research, Redmond, WA 98052

heckerma@microsoft.com, breese@microsoft.com

Abstract

A Bayesian network is a probabilistic representation for uncertain relationships, which has

proven to be useful for modeling real-world problems. When there are many potential causes

of a given effect, however, both probability assessment and inference using a Bayesian network

can be difficult. In this paper, we describe causal independence, a collection of conditional

independence assertions and functional relationships that are often appropriate to apply to the

representation of the uncertain interactions between causes and effect. We show how the use of

causal independence in a Bayesian network can greatly simplify probability assessment as well

as probabilistic inference.

1 Introduction

A Bayesian network is a modeling and inference tool for problems involving uncertainty

[Howard and Matheson, 1981, Pearl, 1988]. The representation rigorously describes probabilistic

relationships, yet includes a human-oriented qualitative structure that facilitates communication

between the user and the probabilistic model. Consequently, the representation has proven to be

useful for modeling many real-world problems including diagnosis, forecasting, automated vision,

sensor fusion, manufacturing control, and information retrieval [Heckerman et al., 1995c].

To be more technical, a Bayesian network encodes a joint probability distribution over a set

of random variables. A variable may be discrete, having a finite or countable number of states,

or it may be continuous. In describing a Bayesian network, we use lower-case letters to represent

single variables and upper-case letters to represent sets of variables. We write x = k to denote that

variable x is in state k. When we observe the state for every variable in set X, we call this set

of observations a state of X. The joint space of a set of variables U is the set of all states of U .

The joint probability distribution over U is the probability distribution over the joint space of U .

We use p(X|Y ) to denote the set of joint probability distributions over X, each one conditional on

every state in the joint space of Y .
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A problem domain is a set of variables. A Bayesian network for the domain U = {x1, . . . , xn}

consists of a set of local conditional probability distributions, combined with a set of assertions of

conditional independence that allow us to construct the global joint distribution over U from the

local distributions. The decomposition is based on the chain rule of probability, which dictates that

p(x1, . . . , xn) =
n∏

i=1

p(xi|x1, . . . , xi−1). (1)

For each variable xi, let Πi ⊆ {x1, . . . , xi−1} be a set of variables that renders xi and {x1, . . . , xi−1}

conditionally independent. That is,

p(xi|x1, . . . , xi−1) = p(xi|Πi) (2)

The idea is that the distribution of xi can often be described conditional on a set Πi that is

substantially smaller than the set {x1, . . . , xi−1}. Given these sets, a Bayesian network can be

described in part as a directed acyclic graph such that each variable x1, . . . , xn corresponds to a

node in that graph, and the parents of the node corresponding to xi are the nodes corresponding

to the variables in Πi. (In the remainder of this paper, we use xi to refer to both the variable and

its corresponding node in a graph.) Note that, because the parents in the graph coincide with the

conditioning sets Πi, the Bayesian network structure directly encodes the assertions of conditional

independence in Equation 2.

In a Bayesian network, each node xi is associated with the conditional probability distri-

butions p(xi|Πi)—one distribution for each state of Πi. These distributions may be directly

assessed, learned from data, or determined from a combination of prior knowledge and data

[Spiegelhalter and Lauritzen, 1990]. From Equations 1 and 2, we see that any Bayesian network

for {x1, . . . , xn} uniquely determines a joint probability distribution for those variables. That is,

p(x1, . . . , xn) =
n∏

i=1

p(xi|Πi) (3)

The structure of a Bayesian network will depend on how the variables are ordered in the

expansion of Equation 1. If the order is chosen carelessly, the resulting network structure may

fail to reveal many conditional independencies in the domain. In practice, however, domain

experts often can readily assert causal relationships among variables in a domain; and we can

use these assertions to construct a Bayesian-network structure without preordering the variables.

Namely, to construct a Bayesian network for a given set of variables, we draw arcs from cause

variables to their immediate effects. In almost all cases, doing so results in a Bayesian net-

work whose conditional-independence implications are accurate. For example, we used cause-

and-effect considerations to construct the Bayesian-network structure shown in Figure 1. The

network is used for troubleshooting printing problems within the Windowstm operating sys-

tem. The connection between causation and conditional independence is discussed in detail in

(e.g.) [Spirtes et al., 1993, Pearl, 1995, Heckerman and Shachter, 1995]. Statistical techniques
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Figure 1: A Bayesian-network structure for troubleshooting a printing problem. Arcs are drawn

from cause to effect.

for learning Bayesian-network structure from data or a combination of data and expert knowl-

edge are also available [Cooper and Herskovits, 1992, Spiegelhalter et al., 1993, Buntine, 1994]

[Madigan and Raftery, 1994, Heckerman et al., 1995b].

Because a Bayesian network for any domain determines a joint probability distribution for that

domain, we can—in principle—use a Bayesian network to compute any probability of interest. For

example, suppose we have the simple Bayesian network with structure w → x → y → z, and we

want to know p(w|z). From the rules of probability we have

p(w|z) =
p(w, z)

p(z)
=

∑
x,y p(w, x, y, z)

∑
w,x,y p(w, x, y, z)

(4)

where p(w, x, y, z) is the joint distribution determined from the Bayesian network. In practice,

this approach is not feasible, because it entails summing over an exponential number of terms.

Fortunately, we can exploit the conditional independencies encoded in a Bayesian network to make

this computation more efficient. In this case, given the network structure, Equation 4 becomes

p(w|z) =

∑
x,y

p(w, x, y, z)
∑

w,x,y
p(w,x, y, z)

(5)

=
p(w)

∑
x

p(x|w)
∑

y
p(y|x)p(z|y)

∑
w

p(w)
∑

x
p(w)p(x|w)

∑
y

p(y|x)p(z|y)

That is, using conditional independence, we can often reduce the dimensionality of the prob-

lem by rewriting the sums over multiple variables as the product of sums over a single variable
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Figure 2: (a) A Bayesian network structure for multiple causes and a single effect. (b) A noisy-OR

model for the multiple-cause interaction in (a).

(or at least smaller numbers of variables). The general problem of computing probabilities of

interest from a (possibly implicit) joint probability distribution is called probabilistic inference.

Several researchers have developed algorithms for exact probabilistic inference that make use of

the conditional independencies represented in a Bayesian network [Shachter, 1988, Pearl, 1988,

Lauritzen and Spiegelhalter, 1988, Jensen et al., 1990, D’Ambrosio, 1991].

In this paper, we examine an important weakness of the Bayesian-network representation.

When modeling the real world, we often encounter situations in which an effect has many potential

causes. In these situations, probability specification and inference can be impractical if not impossi-

ble. For example, suppose we have n binary (two-state) causes c1, . . . , cn bearing on a single binary

effect e, as shown in Figure 2a.1 According to the definition of Bayesian networks, we must specify

the probability distribution of e conditional on every state of its parents. Thus, in this example, we

must specify 2n probability distributions for the node. Furthermore, probabilistic inference (e.g.,

the computation of p(c1|e)) has time complexity O(2n).

To overcome this limitation of the representation, [Kim and Pearl, 1983] introduced the noisy-

OR model. The model, which assumes that causes and effect are binary with states true and false,

is shown in Figure 2b. The nodes mi represent inhibitory causal mechanisms, each of which have

1To avoid clutter, we do not show the probability distributions in this or other Bayesian networks in this paper.
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two states—true and false. Nodes in the figure with double borders, called deterministic nodes,

are deterministic functions of their parents. In particular, a node labeled AND assumes a state

given by the conjunction of the node’s parents. Nodes labeled NOT and OR have corresponding

relationships. Thus, in the noisy-OR model, each inhibitory causal mechanism mi prevents its

corresponding cause ci from producing the effect; and the effect will be false only if all the inhibitory

causal mechanisms associated with present causes are active. In addition, as is indicated by the

lack of arcs between the nodes mi, causal mechanisms are mutually independent.

As an example of the noisy-OR model, consider the interactions among the node Spooled Data

OK and its parents in the print troubleshooter model. Although the spool process may be bad

for a given font due to a programming bug, this cause of bad spooled output will be inhibited if

the document being printed does not use that font. Also, local disk space may be inadequate, but

this cause of bad spooled output will be inhibited if the print job is small. Thus, we can use the

noisy-OR model to capture these relationships.

[Henrion, 1987] extended the noisy-OR model to include situations where the effect can be

true even when all described causes are false. In this extension, we include a dummy or leak cause,

which is always set to true. This single cause represents other causes not described that may be

contributing to the effect.

Because mechanisms are independent in the noisy-OR model, use of the model leads to a

significant reduction in the number of probabilities required to quantify the cause–effect interaction.

Namely, whereas the unrestricted model requires 2n probabilities, the noisy-OR model requires only

n probabilities: one probability for each causal mechanism. Consequently, probability assessment

is simplified, and learning algorithms are more accurate (assuming the model is correct).

The noisy-OR model has been generalized in several ways [Srinivas, 1993, Diez, 1993,

Heckerman, 1993, Heckerman and Breese, 1994]. In this paper, we describe these generalizations,

which collectively we call causal independence, and show how these models are related to one

another. In addition, we show how the use of causal independence leads to simplifications in prob-

ability assessment and probabilistic inference. Use of the noisy-OR model to improve the learning

of probabilities is discussed in [Neal, 1992].

2 General Causal Independence

Causal independence is a straightforward generalization of the noisy-OR model, and is depicted

in the Bayesian network of Figure 3. In this model, the causes, effect, causal mechanisms, and

intermediate nodes (xi) may be discrete or continuous. In addition, each function fi and the

function g are unrestricted. Also, as in the case of the noisy-OR model, we assume that the causal

mechanisms are mutually independent—hence the name for the model. Note that, because causes

and the intermediate nodes are no longer restricted to two states, we should not interpret the

causal mechanisms as necessarily inhibitory. Rather, the mechanisms represent a more general
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Figure 3: A Bayesian network depicting general causal independence.

mapping from cause to effect. A slightly less general form of causal independence is described by

[Srinivas, 1993].

As is true for the noisy-OR model, use of the causal-independence model simplifies the quan-

tification of the cause–effect interaction, because the causal mechanisms are mutually independent.

For example, assuming all variables are discrete, we can quantify the interaction by specifying n+1

functions and a number of probabilities that is linear in n. In contrast, to quantify the unrestricted

model where e has parents c1, . . . , cn, we require a number of probabilities that is exponential in n.

Let us consider some examples of causal independence that have been used in real-world applica-

tions. In the noisy-MAX model, each cause has a distinguished state “absent” or “off”, each interme-

diate node xi takes on consecutive integer values between 0 and an upper bound (possibly infinity),

and the effect e takes on consecutive integer values between 0 and a bound equal to the largest bound

on the intermediate nodes. The function g is the MAX function g(i1, . . . , in) = max(i1, . . . , in);

and each function fi has the restriction that fi(ci = absent,mi) = 0. Note that the noisy-MAX

model is equivalent to the noisy-OR model when each intermediate node has states {0, 1}.

In the noisy-addition model, each cause has a distinguished state “absent” or “off”,2 each

intermediate node xi takes on consecutive integer values between some lower and upper bound

(possibly +/− infinity), and e takes on integer values. The function g is addition; and each

function fi has the restriction that fi(ci = absent,mi) = 0.

The most commonly used example of causal independence is the linear-Gaussian model, given

by

e = a +
n∑

i=1

bi · ci + ε

where a and the bi are constants and ε has a normal distribution with mean zero and variance v

(written N(0, v)). We can describe this model in terms of causal independence as follows:

xi = bi · ci, i = 1, . . . , n

2[Heckerman, 1993] describes special cases of the noisy-MAX and noisy-addition models where all causes are

binary.
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xn+1 = mn+1 ∼ N(0, v)

and

g(x1, . . . , xn+1) = x1 + . . . + xn+1

3 Specific Forms of Causal Independence

In this section, we examine several specializations of the causal-independence model. The names of

the models along with their relationships are depicted in Figure 4. After describing each model, we

identify its benefits for probability assessment and/or probabilistic inference. As is to be expected,

the more specific models have added benefits, but are less generally applicable.

3.1 Amechanistic Causal Independence

One problem with general causal independence is that it is sometimes difficult to identify specific

causal mechanisms and intermediate nodes. This problem is avoided in amechanistic causal in-

dependence, first described by Heckerman and BreeseHB94uai under the name atemporal causal

independence.

In using this model, we designate some state of every cause to be distinguished. For most real-

world models, this state will be the one that has no bearing on the effect—that is, the “absent”

or “off” state—but we do not require this association. We use ∗ to denote the distinguished state

for each cause. Also, for every cause ci, we introduce an intermediate node ei that corresponds to

effect e had all causes but ci been in their distinguished states. Finally, we assume that the ei are

mutually independent, and that e is deterministic function of e1, . . . , en, as is shown in Figure 5.

The noisy-OR, noisy-MAX, noisy-addition, and linear-Gaussian models are examples of amech-

anistic causal independence. For example, to transform the noisy-OR model as described in Fig-

ure 2b to the amechanistic form of Figure 5, we (1) remove the causal-mechanism nodes mi from
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the Bayesian network of Figure 2b,3 (2) identify each node xi in Figure 2b with ei in Figure 5, and

(3) take g in Figure 5 to be the OR function.

Amechanistic causal independence has an interesting semantics. In particular, by definition

of the intermediate nodes ei, these nodes can not be simultaneously observed. Nonetheless, the

model includes the assumption that these nodes are mutually independent. Philosophers call such

an assumption a counterfactual [Lewis, 1973, Holland, 1986]—a statement that can not be veri-

fied by observation. Although this assumption may seem unusual, this and other counterfactual

assumptions can be made rigorous in the context of a causal model [Rubin, 1978, Pearl, 1995,

Heckerman and Shachter, 1995].

We note that amechanistic causal independence has several model restrictions. Namely, each

intermediate node ei must have the same number of states as e. Also, let e0 denote the state of e

when all causes are in their distinguished state. Then, by definition of ei, it follows that ei = e0

when ci = ∗, and that g(e0, . . . , e0) = e0.

3.2 Decomposable Causal Independence

In many domains, the function g in the general causal-independence model can be decomposed into

a series of binary functions, as shown in Figure 6,4 such that the number of states in each yi is less

than exponential in n. When this restriction is met, we say that the causal-independence model is

decomposable [Heckerman and Breese, 1994]. An example of this form of causal independence is the

noisy-OR model, where each gi(x, y) = OR(x, y), and e0 = false. The noisy-MAX, noisy-addition,

and linear-Gaussian models are also examples of decomposable causal independence. A function

g that does not yield decomposable causal independence is the r-of-n function, 0 < r < n, n > 2,

which takes binary inputs and returns 1 if and only if exactly r of its inputs are 1.

Unlike the forms of causal independence described in the previous sections, this form of has

advantages for probabilistic inference. The advantages are most significant for domains where

3In removing a node from a Bayesian network, we obtain a new Bayesian network whose joint probability distri-

bution is consistent with that of the original Bayesian network. The process of node removal in Bayesian networks is

discussed in [Shachter, 1986].
4We introduce the constant e0 so that all functions gi have two arguments.
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variables are discrete. In these cases, the computational complexity of exact inference is at least

exponential in the number of parents of the node with the most parents, and complexity is often

dominated by this factor. Thus, although decomposition increases the number of nodes in the

Bayesian network, it decreases the number of parents of node e, thereby often leading to a reduction

in inference complexity. For example, the computation of p(c1|e) using the Bayesian network in

Figure 3 has complexity O(2n), whereas the same computation in the Bayesian network of Figure 6

has complexity O(n).

We can obtain even greater inference speedups when the function g can be decomposed for

different orderings of the causes. For example, in the noisy-OR, noisy-MAX, noisy-addition, and

linear-Gaussian models, we can change the ordering of the causes, and still obtain a model of

the form shown in Figure 6, because the functions OR, MAX, and addition are associative and

commutative. We call this form of causal independence multiply decomposable.

To illustrate how this form of causal independence can further simplify probabilistic inference,

consider the multiply-connected Bayesian network in Figure 7a. If we represent the cause–effect

relationships in the form of Figure 6 using the ordering (c1, c2, c3), then we obtain the Bayesian

network in Figure 7b.5 In contrast, if we use the ordering (c2, c3, c1), then we obtain the Bayesian

network in Figure 7c. Inference using exact Bayesian-network algorithms typically will be less

efficient in the Bayesian network of Figure 7b than that in the Bayesian network of Figure 7c,

because there is a larger undirected cycle in the former network. In Section 4, we examine inference

speedups in more detail.

3.3 Temporal Causal Independence

The last form of causal independence that we consider, called temporal causal independence

[Heckerman, 1993], is a special case of both amechanistic and decomposable causal independence.

The model is depicted in Figure 8a. As in the case of amechanistic causal independence, we des-

ignate some state of every cause to be distinguished. In addition, for each cause ci, we introduce

5We have removed the causal mechanisms, intermediate nodes, and constant e0 from the Bayesian network for

simplicity. This removal does not change our argument.
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Figure 7: (a) A multiply connected Bayesian network. (b,c) Two transformations of the Bayesian

network in (a). The network in (c) has a smaller undirected cycle than that in (b).

an intermediate node ei that corresponds to effect e had all causes but ci been set to their dis-

tinguished states. In addition, for every cause ci, we include a variable eti that represents the

state of e had causes ci+1, . . . , cn been set to their distinguished state. Finally, as in the case of

decomposable causal independence, we assume that the intermediate variables are related by the

functions eti = gi(ei, et(i−1)), i = 1, . . . , n.

The model takes on a temporal semantics when we remove the intermediate nodes ei, yielding

the Bayesian network of Figure 8b. In particular, assume that the causes are initially set to their

distinguished state at time t = 0. In addition, assume that, at time t = i, cause ci is activated—that

is, allowed to vary from its distinguished state—and subsequently remains at this new state. Then,

we can interpret Figure 8b by associating node ci with the ith cause after activation, and node eti

with the effect at time t = i.

Under this interpretation, the conditional-independence assertions of Figure 8b can be verified

easily. Namely, the effect at time t = i is independent of previously activated causes, given the

effect time t = i − 1 and the ith cause after activation. Also, the definitions of ei and eti impose

a constraint on each function ri. Namely, et(i−1) = gi(et(i−1), e0)—that is, e0 is the left identity of

gi, i = 1, . . . , n.

In closing our discussion of the various forms of causal independence, we stress that the preferred

form will depend on the specific causes and effects being modeled as well as the expert providing

the model. In an application involving the effect of drugs on white blood cell counts, we found

the temporal version of causal independence to be a more natural method for interacting with

the expert [Heckerman, 1993]. In contrast, in a number of hardware troubleshooting applications

[Heckerman et al., 1995a], we found the amechanistic form to be more effective.
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4 Inference Improvement in Bayesian Networks

In the previous section, we saw that there are two potential sources for gains in inference efficiency:

(1) reduction in the size of parent sets afforded by (singly) decomposable causal independence,

and (2) rearrangement of decompositions afforded by multiply decomposable causal independence.

Although the speedups are clear for the simple Bayesian networks that we have considered, the

gains are not so transparent for more general Bayesian networks.

To better understand the general case, we performed several experiments, measuring increases

in inference efficiency for several artificial and real-world Bayesian networks: Medical, Hardware,

BN2(binary), and BN2(5). In each model, we used the noisy-MAX model to encode all parent–child

relationships. The Medical network is a 32-node Bayesian network for medical diagnosis. Nodes

have two or three states; and the node with the most parents has 11 parents. The Hardware network

is a 27-node Bayesian network for hardware diagnosis. The network has very few undirected cycles

and mostly binary nodes; and there are at most three causes for each effect. The BN2 networks are

artificial networks consisting of ten causes and four effects. Each effect has four causes, and two of

the causes are common causes of each effect. Each node in the BN2(binary) and BN2(5) models

have two and five states, respectively.

In our experiments, we used Jensen’s junction-tree inference algorithm [Jensen et al., 1990],

an adaptation of Lauritzen-Spiegelhalter’s algorithm [Lauritzen and Spiegelhalter, 1988]. In using

this algorithm, we transform a given Bayesian network to an annotated undirected tree, where each

node in the tree—sometimes called a clique—corresponds to a set of nodes in the original Bayesian

network. Associated with each clique is its joint probability distribution. The run time of the

algorithm is roughly proportional to the sum of the clique sizes; and we use this sum as a surrogate

12



Table 1: The effect of decomposition on clique size.

Clique Size Clique Size

Without Decomposition With Decomposition

Network Largest Sum Largest Sum

Medical 8192 15068 1536 4966

Hardware 32 176 32 196

BN2(binary) 32 128 8 160

BN2(5) 3125 12500 125 1250

for run time.

Table 4 shows the benefits of parent-size reduction due to single decomposition with decompo-

sition orderings chosen at random. We see that decomposition produces a factor-of-three reduction

in the sum of cliques sizes in the Medical network. Most of this improvement can be traced to

the node with 11 parents. Without decomposition, this node–parent set produces a clique of size

8192. Whereas, with decomposition, this node-parent set produces cliques, the largest of which has

size 1536. Decomposition actually worsens performance in the Hardware network. In particular,

decomposition increases the number of cliques, but does little to reduce the size of cliques, because

most nodes are binary and each node has at most three parents. Comparisons of BN2(binary)

and BN2(5) show that decomposition becomes more effective as the number of node states is in-

creased. Overall, these results indicate that use of decomposition can decrease inference complexity

substantially when nodes have many states and many parents.

To measure improvements due to multiple decompositions, we determined the sum of clique

sizes over many random orderings for the BN2(5) Bayesian network. The distribution of sums,

shown in Figure 9, indicates that gains are relatively modest. In particular, the sum of clique sizes

associated with the best expansion is only slightly smaller than that of the average expansion. We

have obtained similar results for other Bayesian networks.
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