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Abstract

This paper discuses multiple Bayesian net-
works representation paradigms for encod-
ing asymmetric independence assertions. We
offer three contributions: (1) an inference
mechanism that makes explicit use of asym-
metric independence to speed up computa-
tions, (2) a simplified definition of similarity
networks and extensions of their theory, and
(3) a generalized representation scheme that
encodes more types of asymmetric indepen-
dence assertions than do similarity networks.

1 Introduction

Traditional probabilistic approaches to diagnosis, clas-
sification, and pattern recognition face a critical
choice: either specify precise relationships between all
interacting variables or make uniform independence
assumptions throughout. The first choice is computa-
tionally infeasible except in very small domains, while
the second, which is rarely justified, often yields inad-
equate conclusions.

Bayesian networks offer a compromise between the two
extremes by encoding independence when possible and
dependence when necessary. They allow a wide spec-
trum of independence assertions to be considered by
the model builder so that a practical balance can be es-
tablished between computational needs and adequacy
of conclusions.

Although Bayesian networks considerably extend tra-
ditional approaches, they are still not expressive
enough to encode every piece of information that might
reduce computations. The most obvious omissions are
asymmetric independence assertions stating that vari-
ables are independent for some but not necessarily for
all of their values. Such asymmetric assertions can-
not be represented naturally in a Bayesian network.
Several researchers observed this limitation, however,
until recently no effort was made to remove it.

Similarity network paradigm is the first ma-
jor effort towards the representation of asym-
metric independence [Heckerman, 1990]. Contin-
gent influence diagrams is an alternative approach
[Fung and Shachter, 1991]. Both schemes employ
asymmetric independence to ease the elicitation and
improve the quality of probabilistic models.

This article offers three contributions: (1) an inference
mechanism that makes explicit use of asymmetric in-
dependence to speed up computations, (2) a simplified
definition of similarity networks and extensions of their
theory, and (3) a generalized representation scheme
that encodes more types of asymmetric independence
assertions than do similarity networks.

These contributions address problems of knowledge
representation, inference, and knowledge acquisition.
In particular, Section 2 describes Bayesian multinets
and how to use them for inference, Section 3 describes
knowledge acquisition using similarity networks and
how to convert them to Bayesian multinets, Section 4
extends these representation schemes to the case where
hypotheses are not mutually exclusive and section 5
summarizes the results. We assume the reader is famil-
iar with the definition and usage of Bayesian networks.
For details consult [Pearl, 1988].

2 Representation and Inference

2.1 Bayesian Multinets

The following example demonstrates the problem of
representing asymmetric independence by Bayesian
networks:

A guard of a secured building expects three
types of persons to approach the building’s
entrance: workers in the building, approved
visitors, and spies. As a person approaches
the building, the guard notes its gender and
whether or not the person wears a badge.
Spies are mostly men. Spies always wear
badges in order to fool the guard. Visitors



don’t wear badges because they don’t have
one. Female-workers tend to wear badges
more often than do male-workers. The task
of the guard is to identify the type of person
approaching the building.

A Bayesian network that represents this story is shown
in Figure 1. Variable h in the figure represents the cor-
rect identification. It has three values w, v, and s re-
spectively denoting worker, visitor, and spy. Variables
g and b are binary variables representing, respectively,
the person’s gender and whether or not the person
wears a badge. The links from h to g and from h to
b reflect the fact that both gender and badge-wearing
are clues for correct identification, and the link from
g to b encodes the relationship between gender and
badge-wearing.

Unfortunately, the topology of this network hides the
fact that, independent of gender, spies always wear
badges and visitors never do. The network does not
show that gender and badge-wearing are conditionally
independent given the person is a spy or a visitor. A
link between g and b is drawn merely because gen-
der and badge-wearing are related variables when the
person is a worker.
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Figure 1: A Bayesian network for the secured-building
example.

We can more adequately represent this story using two
Bayesian networks shown in Figure 2. The first net-
work represents the cases where the person approach-
ing the entrance is either a spy or a visitor. In these
cases, badge-wearing depends merely on the type of
person approaching, not on its gender. Consequently,
nodes b and g are shown to be conditionally indepen-
dent (node h blocks the path between them). The
links from h to b and from h to g in this network re-
flect the fact that badges and gender are relevant clues
for distinguishing between spies and visitors. The sec-
ond network represents the hypothesis that the person
is a worker, in which case gender and badge-wearing
are related as shown.

Figure 2 is a better representation than Figure 1 be-
cause it shows the dependence of badge-wearing on
gender only in context in which such a relationship
exists, namely, for workers. Moreover, the former rep-
resentation requires 11 parameters while the represen-
tation of Figure 2 requires only 9. This gain, due
to asymmetric independence, could be substantially
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Figure 2: A Bayesian multinet representation of the
secured-building story.

larger for real-sized problems because the number of
parameters needed grows exponentially in the num-
ber of variables, whereas the overhead of representing
multiple networks grows only linearly.

We call the representation scheme of figure 2, a
Bayesian multinet.

Definition Let {u1 . . .un} be a finite set of variables
each having a finite set of values, P be a probabil-
ity distribution having the Cartesian product of these
sets of values as its sample space, and h be a dis-
tinguished variable among the ui’s that represents a
mutually-exclusive and exhaustive set of hypotheses.
Let A1, ..., Ak be a partition of the values of h. A di-
rected acyclic graph Di is called a local network of P
(associated with Ai) if it is a Bayesian network of P
given that one of the hypotheses in Ai holds, i.e., Di

is a Bayesian network of P (u1 . . .un|Ai). The set of k
local networks is called a Bayesian multinet of P .1

In the secured-building example of Figure 2,
{{spy, visitor}, {worker}} is a partition of the
values of the hypothesis node h, one local net-
work is a Bayesian network of P (h, b, g|worker) and
the other local network is a Bayesian network of
P (h, b, g| {spy, visitor}). 2

The fundamental idea of multinets is that of condition-
ing; each local network represents a distinct situation
conditioned that hypotheses are restricted to a speci-
fied subset. Savings in computations and space occur
because, as a result of conditioning, asymmetric inde-
pendence assertions are encoded in the topology of the
local networks. In the example above, conditional in-
dependence between gender and badge-wearing is en-
coded as a result of conditioning on h.

Notably, conditioning may also destroy independence
relationships rather then create them [Pearl, 1988].

1A Bayesian multinet roughly corresponds to an
hypothesis-specific similarity network as defined in Hecker-
man’s dissertation (1990, page 76).

2The conditioning set {spy, visitor} is a short hand nota-
tion for saying that h draws its values from this set, namely,
either h = spy or h = visitor.



However, if the distinguished variable is a root node
(i.e., a node with no incoming links), conditioning on
its values never decreases and often increases the num-
ber of independence relationships, resulting in a more
expressive graphical representation. Other situations
are addressed below where the hypothesis variable is
not a root node or where more than one node repre-
sents hypotheses.

2.2 Representational and Computational
Advantages

The vanishing dependence between gender and badge-
wearing is an example of an hypothesis-specific inde-
pendence because it is manifest only when condition-
ing on specific hypotheses, that is, for spies and visi-
tors, but not for workers. The following variation of
the secured-building example demonstrates an addi-
tional type of asymmetric independence that can be
represented by Bayesian multinets as well.

The guard of the secured building now ex-
pects four types of persons to approach
the building’s entrance: executives, regu-
lar workers, approved visitors, and spies.
The guard notes gender, badge-wearing, and
whether or not the person arrives in a limou-
sine (l). We assume that only executives
arrive in limousines and that male and fe-
male executives wear badges just as do regu-
lar workers (to serve as role models).

This story is represented by the two local networks
shown in Figure 3. One network represents a situation
where either a spy or a visitor approaches the building,
and the other network represents a situation where ei-
ther a worker or an executive approaches the building.
The link from h to l in the latter network reflects the
fact that arriving in limousines is a relevant clue for
distinguishing between workers and executives. The
absence of this link in the former network reflects the
fact that it is not relevant for distinguishing between
spies and visitors.

The vanishing dependence between gender and the hy-
pothesis variable h when h is restricted to a subset of
hypotheses {worker, executive} is an example of subset
independence. Similarly, badge-wearing is independent
of h when restricted to {worker, executive}, and arriv-
ing in limousines is independent of h when restricted
to {spy, visitor}. 3

Subset independence is a source of considerable com-
putational savings. For example, in lymph-node
pathology less than 20% of the potential morpholog-
ical findings are relevant for distinguishing any given
pair of disease hypotheses (among over 60 diseases)
[Heckerman, 1990].

3Heckerman coined the terms subset independence and
hypothesis-specific independence in his dissertation.
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Figure 3: A Bayesian multinet representation of the
augmented secured-building story.

Below we demonstrate these computational savings us-
ing the simple secured-building example; more sav-
ings are obtained in real domains such as lymph-node
pathology.

Suppose the guard sees a male (g) wearing a badge
(b) approaches the building and suppose the guard
doesn’t notice whether or not the person arrives in a
limousine. A computation of the posterior probability
of each possible identification (executive, worker, vis-
itor, spy) based on the Bayesian network of Figure 1
simply yields the chaining rule:
P (h|g, b) = K · P (h) · P (g|h) · P (b|g, h). (1)

where K is the normalizing constant.

Using the representation of Figure 3, however, the fol-
lowing more efficient computations are done instead:

P (spy|g, b) = K · P (spy) · P (g|spy) · P (b|spy) (2)
P (visitor|g, b) = K · P (visitor) · P (g|visitor)·

P (b|visitor) (3)
P (worker|g, b) = K · P (worker) · P (g|worker)·

P (b|g,worker) (4)
P (g,b|executive) = P (g,b|worker). (5)

Equations 2 and 3 take advantage of an hypothesis-
specific independence assertion, namely, that g and b
are conditionally independent given, respectively, that
h = spy and h = visitor. Equation 5 uses a subset
independence assertion, namely, that b and g are in-
dependent of h restricted to {worker, executive}.
More generally, calculating the posterior probability
of each hypothesis based on a set of observations
e1, ..., em is done in two steps. First, for each hypothe-
sis hi, the probability P (e1, ..., em|hi) is computed via
standard algorithms such as Spiegelhalter and Lau-
ritzen’s (88) or Pearl’s (88). Second, these results are
combined via Bayes’ rule:

P (hi|e1...em) = K · p(hi)P (e1...ek|hi). (6)

Notably, the computation of P (e1 . . . ek|hi) in the first
step uses the local networks as done in Eqs. (2) through



(5) and does not use a single Bayesian network as done
in Eq. (1). Consequently, when the values of h are
properly partitioned, the extra independence relation-
ships encoded in each local network could considerably
reduce computations.

The parameters needed to perform the above compu-
tations consist, as we shall see next, of the prior of
each hypothesis hi and the parameters encoded in the
local networks:

Theorem 1 Let {u1 . . .un} be a finite set of variables
each having a finite set of values, P be a probability dis-
tribution having the Cartesian product of these sets of
values as its sample space, h be a distinguished vari-
able among the uis, and M be a Bayesian multinet of
P . Then, the posterior probability of every hypothe-
sis given any value combination for the variables in
{u1 . . .un} can be computed from the prior probability
of h’s values and from the parameters encoded in M .

According to Eq. 6 above, the only parameters needed
for computing the posterior probability of each hy-
pothesis hi, aside of the priors, are p(v2 . . . vn|hi)
where v2 . . . vn are arbitrary values of u2 . . .un (assum-
ing without loss of generality that h = u1). Let Di de-
note a local network in M , Ai be the hypotheses asso-
ciated with Di, and hi be an hypothesis in Ai. Clearly,
p(v2 . . . vn|hi) is equal to p(v2 . . . vn|hi, Ai) because
hi logically implies the disjunction over all hypothe-
ses in Ai. The latter probability is computable from
the local network Di by any standard algorithm (e.g.,
[Pearl, 1988]), thus, the former is also computable as
needed. ✷

For example, P (g|worker, {worker, executive}) is
equal to the probability P (g|worker) because worker
logically implies the disjunction worker ∨ executive.
In fact, P (g|worker, {worker, executive}) is also equal
to P (g|{worker, executive}) because g and worker
are independent given {worker, executive} as shown
in Figure 3. In this example, the needed prob-
ability P (g|worker) is equal to the given one
P (g|{worker, executive}), however in general, the
needed probabilities are computed via standard infer-
ence algorithms.

2.3 Overcoming some Limitations

The multinet approach described thus far is especially
beneficial when the hypothesis variable can be mod-
eled as a root node because, then, no dependencies
are ever introduced by conditioning on the different
hypotheses. However, the hypothesis node cannot al-
ways be modeled as a root node. For example, in the
secured-building story, suppose there are two indepen-
dent reports indicating possible spying, say, for mili-
tary and economical reasons respectively. Such a priori
factors for correct identification are modeled as parent

nodes of h, called, say, economics and military having
no link between them to show their mutual indepen-
dence. The resulting network in this case is simply
economics → h← military.

However when h assumes the value spy, an induced
link is introduced between its parents economics and
military; one explanation for seeing a spy changes the
plausibility of the other explanation, thus making the
two variables economics and military be not indepen-
dent conditioned on h = spy. Consequently, an in-
duced link must be drawn between the economics and
military nodes in the local network for spies vs. visi-
tors to account for the above dependency. This link
would not appear in the full Bayesian network be-
cause economics and military are marginally indepen-
dent (they become dependent only when conditioning
on h = spy). Such induced links are often hard to
quantify and therefore, constructing a single local net-
work is sometimes harder than constructing the full
network, as is the case in the above example.

One approach to handle this situation is to first con-
struct a Bayesian network that represents only a priori
factors that influence the hypotheses, ignoring any ev-
idential variables (such as gender, badge-wearing, and
limousines). In our example, this network would be
economics → h ← military. Then, use this network
to revise the a priori probabilities of the different hy-
potheses. Finally, construct local networks ignoring a
priori factors (as done in Figure 2) and use the result-
ing multinet with the revised priors of h to compute
the posterior probability of h as determined by the
evidential clues. This decomposition technique works
best if a priori factors are independent of all clues con-
ditioned on the different hypotheses. That is, in situ-
ations that can be modeled with Bayesian networks of
the form shown in Figure 4 where all paths between a
priori factors ri’s and evidential clues fi’s pass through
h.

When a network of this form cannot serve as a justi-
fiable model, another approach can be used instead;
compose a Bayesian multinet ignoring a priori fac-
tors, construct a Bayesian network from the local net-
works by taking the union of all their links (e.g., the
union of all links in Figure 2 yields the Bayesian net-
work of Figure 1). Finally, add a priori factors to
the resulting network. This approach was proposed
in [Heckerman, 1990].

The disadvantage of this method is that in the pro-
cess of generating a Bayesian network from a multinet,
one encodes asymmetric independence in the parame-
ters rather than in the topology of the Bayesian net-
work. Consequently, these asymmetric assertions are
not available to standard inference algorithm to speed
up their computations.

Nevertheless, this approach is still the best alternative
for decomposing the construction of large Bayesian
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Figure 4: A Bayesian network where all paths be-
tween a priori factors ri’s and evidential clues fi’s pass
through h.

networks having topologies more complex than that
of Figure 4. Such decomposition techniques are cru-
cially needed due to the overwhelming details of real-
life problems. Additional issues of knowledge acquisi-
tion are discussed below.

3 Knowledge Acquisition/
Representation

3.1 Similarity Networks

Recall the guard that must distinguish between work-
ers, executives, visitors and spies. In this story, some
variables do not help distinguish between certain hy-
potheses. For example, gender and badges do not
help distinguish between workers and executives, and
limousines do not help distinguish between spies and
visitors. In richer domains, large numbers of variables
are often not relevant for distinguishing between cer-
tain hypotheses.

Unfortunately, the Bayesian multinet approach re-
quires full specification of all variables in each local
network even when they are not relevant to distin-
guish between the hypotheses associated with that lo-
cal network. For example the relationship between b
and g is encoded in the local network for spies vs. vis-
itors although these variables do not help distinguish
between this pair of hypotheses (Figure 3). Assess-
ing such relationships, in contexts where they are not
relevant, poses insurmountable burden on the expert
consulted as is demonstrated by the following quote
[Heckerman, 1990]:

“When the expert pathologist was asked

questions of the form
Given any disease, does observing
feature x change your belief that
you will observe feature y ?

the expert sometimes would reply
I’ve never thought about these two
features at the same time before.
Feature x is relevant to only one set
of diseases, while feature y is only
relevant to another set of diseases.
These sets of diseases do not over-
lap, and I never confuse the first set
of diseases with the second.”

The solution is to simply include in each local network
only those variables that are relevant for distinguishing
between the hypothesis covered by that local network.

However, by doing so, valuable information for correct
identification might be lost. For example, the rela-
tionships between badge-wearing and gender in Fig-
ure 3 would be lost. To compensate for such losses
of information, additional local networks must be con-
structed.

For example, the secured-building can be represented
with three local networks shown in Figure 5 rather
than two as in Figure 3. One network is used to dis-
tinguish between spies and visitors, another between
visitors and workers, and a third between workers and
executives. In each local network we include only those
variables relevant to distinguishing the hypotheses cov-
ered by that local network. In particular, the relation-
ship between badge-wearing and gender is not included
in the local network for workers vs. executives as in
Figure 3. This relationship, however, is included in
the local networks for visitors vs. workers because it
helps distinguish between these two hypotheses. The
reason for not loosing needed information is that the
three local networks are based on a connected cover of
hypotheses (rather than a partition).

✎
✍

☞
✌

✍✌✎☞✍✌✎☞
✎
✍

☞
✌

✍✌✎☞ ❙
❙❙✇

°
°✠ ❄

Workers/Executives

l

hh

b g

Spies/Visitors

Figure 5: A similarity network representation of the
secured-building story.

Definition A cover of a set A is a collection
{A1, ..., Ak} of non-empty subsets of A whose union



is A. Each cover is a hypergraph, called the similar-
ity hypergraph, where the Ai’s are edges and elements
of A are nodes. A cover is connected if the similarity
hypergraph is connected.

In Figure 5, {spy, visitor}, {visitor, worker}, {worker,
executive} is a cover of the hypotheses set. This cover
is connected because it is simply a four-nodes chain
spy—visitor—worker—executive which, by definition,
is a connected hypergraph. The set {{spy, visitor},
{worker, executive}} is also a cover but it is not con-
nected. The set {{worker, executive, visitor}, {visitor,
spy}} is an example of a connected cover that is a hy-
pergraph which is not a graph.

Definition Let U = {u1 . . .un} be a finite set of
variables each having a finite set of values, P be a
probability distribution having the cross product of
these sets of values as its sample space, and h be a
distinguished variable among the ui’s that represents
a mutually-exclusive and exhaustive set of hypothe-
ses. Let A1, ..., Ak be a connected cover of the values
of h. A directed acyclic graph Di is called a compre-
hensive local network of P (associated with Ai) if it
is a Bayesian network of P assuming one of the hy-
potheses in Ai holds, i.e., Di is a Bayesian network
of P (u1 . . .un|Ai). The network obtained from Di by
removing nodes that are not relevant to distinguishing
between hypotheses in Ai is called an ordinary local
network. The set of k ordinary local networks is called
an (ordinary) similarity network of P .

For example, the local networks of Figure 5 are or-
dinary, and together form an ordinary similarity net-
work. Notably, hypotheses covered by each local net-
work are often similar (e.g., spies and visitors), 4 a
choice that maximizes the number of asymmetric in-
dependence relationships encoded.

Heckerman (1990) shows that under several assump-
tions, if a cover is connected, one can always remove
from each local network variables that do not help dis-
tinguish between hypotheses covered by that local net-
work and yet not loose the information necessary for
representing the full joint distribution. These assump-
tions consist of 1) the hypothesis variable is a root
node, 2) the cover is a graph and not a hypergraph,
3) the local networks are constrained by the same par-
tial order, and 4) the distribution is strictly positive.
Theses assumptions are relaxed below.

Theorem 2 Let {u1 . . .un} be a finite set of variables
each having a finite set of values, P be a probability dis-
tribution having the Cartesian product of these sets of
values as its sample space, h be a distinguished vari-
able among the uis, and S be a similarity network of
P . Then, the posterior probability of every hypothe-
sis given any value combination for the variables in

4Hence the name: similarity network.

{u1 . . .un} can be computed from the parameters en-
coded in S provided p(hi) 6= 0 for every value hi of
h.

To prove the above theorem, it suffices to consider the
case where h is a root node in all the local networks
of S because, otherwise, arc-reversal transformations
[Shachter 1986] can be applied until h becomes one.

Also note that since the similarity hypergraph is con-
nected, it imposes n−1 independent equations among
the following n: p(hi) = p(hi|Ai) ·

P
hj∈Ai

p(hj),
i = 1 . . .n. In addition,

Pn
1 p(hi) = 1. The values

for p(hi) are the unique solution of these linear equa-
tions provided p(hi) 6= 0 for i = 1 . . .n.

Aside of the priors, the only remaining parameters
needed for computing the posterior probability of each
hypothesis hi, are p(v2 . . . vn|hi) where v2 . . . vn are ar-
bitrary values of u2 . . .un (assuming without loss of
generality that h = u1). Due to the chaining rule,
p(v2 . . . vn|hi) can be factored as follows:

p(v2 . . . vn|hi) = P (v2|hi) · P (v3|v2 hi) . . .
p(vn|v1 . . . vn−1 hi).

Thus, it suffices to show that for each variable uj ,
p(vj |v2 . . . vj−1 hi) can be computed from the param-
eters encoded in S.

Let Di denote a local network in S, Ai be the hy-
potheses associated with Di, and hi be an hypothesis
in Ai. There are two cases; either uj is depicted in
Di or it is not. Let Ai, Ai+1 . . .Am be a path in the
similarity hypergraph where Am is the only edge on
this path associated with a local network that depicts
uj as a node. If uj is depicted in Di, then the path
consists of one edge Ai which is equal to Am. If uj

is not depicted in any local network, then uj does not
alter the posterior probability of any hypothesis and
is therefore omitted from the computations.

Let Dk be the local netowrk associated with Ak for
k = i + 1 . . .m and let hi+1, hi+2 . . .hm be a sequence
of hypotheses such that hk ∈ Ak−1 ∩ Ak. Due to
the definition of similarity networks, since uj is not
depicted in Dk where k < m, the following equality
must hold:

p(vj |v2 . . . vj−1 hk−1) = p(vj |v2 . . . vj−1 hk).

Since this equation holds for every k between i+1 and
m, we obtain,

p(vj |v2 . . . vj−1 hi) = p(vj |v2 . . . vj−1 hm).

Moreover,

p(vj |v2 . . . vj−1 hm) = p(vj |v01 . . . v0l hm)

where u01 . . .u0l are the variables depicted in Dm (a sub-
set of {u2 . . .uj−1}) because, due to the definition of



similarity network, the variables deleted are condition-
ally independent of vj , given the other variables; they
are disconnected from all the other variables in Dm. 5

Finally,

p(vj |v01 . . . v0l hm) = p(vj |v01 . . . v0l hm, Am),

because hm logically implies the disjunction over all
hypotheses in Am.

The latter probability is computable from the lo-
cal network Dm by any standard algorithm (e.g.,
[Pearl, 1988]), thus, due the three equalities above,
p(vj |v2 . . . vj−1 hi) is also computable as needed. ✷

For example, to compute P (g, b, l|spy) we use the fol-
lowing two equalities implied by Figure 5: From the
first local network, P (g, b, l|spy) = P (g|spy) ·P (b|spy) ·
P (l|spy) and from the absence of l in the first and
second local networks, P (l|spy) = P (l|worker). Thus,
P (g, b, l|spy) = P (g|spy) ·P (b|spy) ·P (l|worker), where
all the needed probabilities are encoded in the similar-
ity network. In fact, the proof of Theorem 2 provides a
general way of factoring any desired probability, thus,
the full joint distribution P (g, b, l, h) is encoded in the
ordinary similarity network of Figure 5.

Similarity networks have another important advantage
not mentioned so far: protecting the model builder
from omitting relevant clues. For example, suppose
workers and executives often arrive with a smile to
work (because the secured building is such a great
place to be in) while spies and visitors arrive seriously.
Such a clue, smile, is likely to be forgotten when con-
structing the local networks for spies vs. visitors and
for visitors vs. executives because it does not help dis-
tinguish between these pairs of hypotheses. However,
when constructing the similarity network of Figure 5,
which includes a local network for distinguishing vis-
itors from workers, smile is more likely to be recalled
because the distinctions between visitors and workers
are explicitly in focus.

3.2 Redundancy

Basing the construction of local networks on covers of
hypotheses raises the problem of redundancy, namely,
that some parameters are specified in more than one
local network. For example, in Figure 5, the parameter
P (g|visitor) should, in principle, be specified both in
the first and in the second local network. This problem
is particularly crucial because local networks are actu-
ally constructed from expert’s judgments rather than
from a coherent probability distribution as implied by
the definition of similarity networks.

One way to remove redundancy is to automatically-
translate a similarity network as it is being constructed

5Geiger and Heckerman (1990) discuss weaker definitions
of being irrelevant other than being disconnected.

to a Bayesian multinet which is never redundant. For
example, instead of storing Figure 5, we can actually
store Figure 3 which contains no redundant informa-
tion.

The translation is done by the following algorithm.

Conversion Algorithm

Input: A similarity network S of a probability distri-
bution P .

Output: A Bayesian multinet of P .

1. For each ordinary local network L in S:

• Add a node for each variable not represented
in L.

• For each added node x, set the parents of
x in L to be the union of all parents of x
in all other local networks where x originally
appeared, excluding variables that were orig-
inally in L.

2. Remove enough local networks from S and enough
hypotheses from the remaining local networks un-
til a Bayesian multinet is obtained.

(A finer version of this algorithm is forthcoming).

Notably, the user of a similarity network need not
know about the conversion to a Bayesian multinet
which can be thought of as an internal representation.
The user benefits from both the advantages of simi-
larity network for knowledge acquisition, and from an
inference algorithm (Section 2) that uses the Bayesian
multinet produced by the conversion algorithm.

4 Generalized Similarity Networks

Previous sections assume all hypotheses are mutually
exclusive and are, therefore, represented as values of
a single hypothesis variable denoted h. Here this as-
sumption is relaxed. We allow several variables to rep-
resent hypotheses, as needed by the following example:

Consider the guard of Section 2 who has
to distinguish between workers, visitors, and
spies. A pair of people approach the building
and the guard tries to classify them as they
approach. Assume that only workers con-
verse (c) and that workers often arrive with
other workers (because they must car-pool to
conserve energy).

A Bayesian network representing this situation is
shown in Figure 6 where nodes h1 and h2 stand for
the respective identity of the two persons. (The direc-
tion of the link between h1 and h2 is arbitrary.)
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Figure 6: A Bayesian network with two hypothesis
nodes h1 and h2.

Alternatively, we can represent this example using
a generalized similarity network, or a generalized
Bayesian multinet.

Definition Let {u1 . . .un} be a finite set of variables
each having a finite set of values, P be a probability
distribution having the cross product of these sets of
values as its sample space, and H be a subset of dis-
tinguished variables among the ui’s each representing
a set of hypotheses. Denote the Cartesian product
of the sets of values of the distinguished variables by
domain(H). Let A1, ..., Ak be a connected cover of
domain(H). A directed acyclic graph Di is called a
comprehensive local network of P if it is a Bayesian
network of P (u1 . . .un|Ai). The network obtained
from Di by removing nodes that are not relevant to
distinguishing between hypotheses in Ai is called an
ordinary local network. The set of k local networks
is called a generalized similarity network of P . When
A1, ..., Ak is a partition of domain(H), then the set of
k comprehensive local networks is called a generalized
Bayesian multinet.

For example, the secured-building story is repre-
sented in the generalized similarity network of Fig-
ure 7. Note, H = {h1, h2} and domain(H) con-
sists of nine elements (x, y) where both x and
y are drawn from the set {w, v, s}. A con-
nected cover of domain(H) upon which Figure 7
is based consists of: {(s, s) (v, s) (s, v) (v, v)},
{(v, v) (w, v) (v, w) (w,w)}, and {(s, s) (s,w) (w, s)}.
This cover is connected.
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Figure 7: A generalized similarity network with two
hypothesis nodes.

Most asymmetric independence assertions encoded in
Figure 7 were either explained in previous sections or
are obvious from the verbal description of the story.

The absence of a link between h1 and h2 in the top
network encodes the fact that if the guard knew that
one person is a spy, this knowledge would not help
him/her decide whether the other person is a spy or
a visitor. The existence of a link between h1 and h2

in the middle network encodes the fact that workers
come in pairs more often than do visitors. Hence the
knowledge that one person is a worker is a clue for
classifying the other person.

The vanishing dependence between hypothesis vari-
ables h1 and h2 in case of spies vs. visitors is an exam-
ple of inter-hypothesis independence. Such asymmet-
ric assertions cannot be encoded in ordinary similarity
networks.



5 Summary

This paper proposes an efficient format for encoding
and using asymmetric independence assertions for in-
ference. The model builder is asked to express knowl-
edge about independence by constructing multiple lo-
cal networks using informal guidelines of causation and
time ordering. Like any Bayesian network, local net-
works possess precise semantics in terms of indepen-
dence assertions and these can be used to verify 1)
whether the network faithfully represents the domain
and 2) whether the input is consistent.

Multiple local networks have several advantages com-
pared to a single Bayesian network. The elicitation
of several small networks is easier than eliciting a sin-
gle full-scale Bayesian network because the expert can
focus his/her attention to particular subdomains, and
hence, provide more reliable judgments. Multiple net-
works represent a domain better because more knowl-
edge about independence is qualitatively encoded. Al-
gorithms for finding the most likely hypothesis run
faster when using multiple networks. And finally, the
overall storage requirement of multiple networks is of-
ten smaller than that of a single Bayesian network
because as independence assertions become more de-
tailed, less numeric parameters are needed for describ-
ing a domain.

Notably, when independence assertions in the domain
are symmetric, a single Bayesian network is preferable.

The challenges remain to 1) devise additional graphical
representation schemes of salient patterns of indepen-
dence assertions, (2) provide computer-aided elicita-
tion procedures for constructing these representations,
and (3) devise efficient inference procedures that make
use of the encoded assertions.
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